[1] AL Raisi SI, Pouliopoulos J, Swinnrnc J, et al. Renal artery denervation in resistant hypertension: the good, the bad and the future [J]. Heart, Lung Circulation. 2020, 29(1):94–101. [2] Cosman ER. Radiofrequency lesions [M]. Berlin/Heidelberg: Springer- Verlag, 2009:1359-1382. [3] Baik J, Seo S, Lee S, et al. Circular radio-frequency electrode with MEMS temperature sensors for laparoscopic renal sympathetic denervation[J]. IEEE transactions on bio-medical engineering, 2022, 69(1):256-264. [4] Patel HC, Dhillon PS, Mahfoud F, et al. The biophysics of renal sympathetic denervation using radiofrequency energy [J]. Clinical Research in Cardiology, 2014, 103(5):337-344. [5] Sakaoka A, Terao H, Nakamura S, et al. Accurate depth of radiofrequency-induced lesions in renal sympathetic denervation based on a fine histological sectioning approach in a porcine model[J]. Circulation-Cardiovascular Interventions. 2018, 11(2):1–8. [6] 李慧杰, 杨成明, 余航,等. 肾交感神经射频消融术治疗高血压犬的适宜消融温度探讨[J]. 第三军医大学学报, 2012, 34(5):434-437. Li HJ,Yang CM,Yu H, et al. Suitable ablation temperature for renal sympathetic-nerve ablation in treatment of hypertensive dogs [J]. Journal of Third Military Medical University, 2012, 34(5):434-437. [7] Zhenglong W, Shaojie C, Tingquan Z, et al. Comparison of saline-irrigated catheter vs. temperature-controlled catheter for renal denervation in a canine model[J]. American Journal of Hypertension, 2015, 28(12): 1434-1443. [8] Cohen-Mazor M, Mathur P, Stanley JRL, et al. Evaluation of renal nerve morphological changes and norepinephrine levels following treatment with novel bipolar radiofrequency delivery systems in a porcine model[J]. Journal of Hypertension, 2014, 32(8):1678-1692. [9] Baik J, Kim H, Lee S, et al. Laparoscopic Ablation System for Complete Circumferential Renal Sympathetic Denervation[J]. IEEE Transactions on Bio-medical Engineering, 2021,68(11):3217-3227. [10] Haemmerich D, Webster JG. Automatic control of finite element models for temperature-controlled radiofrequency ablation[J]. BioMedical Engineering OnLine, 2005, 4(1):1-8. [11] 刘明. 肾交感神经射频消融仪温度控制系统的研究[D].哈尔滨:哈尔滨工业大学, 2012. Liu M. Research on the temperature control system of radiofrequency ablation instrument for renal denervation[D]. Harbin :Harbin Institute of Technology, Harbin Institute of Technology, 2012. [12] Zhang B, Moser M, Zhang EM, et al. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones[J]. International Journal of Hyperthermia, 2017, 33(4):367-377. [13] Singh S, Repaka R. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models[J]. International Journal of Hyperthermia, 2017, 33(2):122-134. [14] 张福强.基于嵌入式的人体射频温控系统的设计与实现[J].计算机测量与控制, 2012,20(11):2983-2985. Zhang FQ. Design and implementation of temperature control system based on embedded RF [J]. Computer measurement and control, 2012, 20(11):2983-2985. [15] 陆宏伟,陈亚珠. 基于改进PID算法的射频消融治疗仪[J]. 北京生物医学工程, 2003,22(1):45-47. Lu HW, Chen YZ. Improved PID Algorithm Based RF Ablation Therapeutic Instrument[J]. Beijing Biomedical Engineering, 2003, 22(1):45-47. [16] 熊斌, 陈琦, 陈亚珠,等. 基于改进PID算法的多极射频消融治疗系统的研制[J].仪器仪表学报, 2002, 23(5):495-498. Xiong B, Chen Q, Chen YZ, et al. The development of multi-pole RF ablation instrument based on improved PID algorithm[J]. Journal of Instrumentation, 2002, 23(5):495-498. [17] 邵江华. 人体射频探头最优温度控制方法仿真分析[J]. 计算机仿真, 2016,33(5):304-307. Shao JH. Simulation analysis of optimal temperature control method for human radio frequency probe[J]. ?Computer Simulation, 2016, 33(5):304-307. [18] Cheng YY, Nan Q, Wang RR, et al. Fuzzy proportional integral derivative control of a radiofrequency ablation temperature control system[C]//10th International Congress on Image and Signal Processing (CISP-BMEI), China. 2018, 68(1), 515-518. [19] 文定都.ADRC串级控制在电加热炉温度控制中的应用研究[J].仪表技术与传感器,2015(6):59-62. Wen DD. Applied Research of ADRC cascade control in temperature control system of electric furnace[J]. Instrument Technique and Sensor, 2015(6):59-62. [20] Sun D. Comments on active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3428-3429. [21] Pu Z, Yuan R, Yi J, et.al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transaction on Industrial Electronics, 2015, 62(9): 5858-5869. [22] 李岷钊. 基于Simulink对自抗扰控制技术的仿真分析[J]. 信息与电脑, 2019(1):167-171. Li MZ. Simulation analysis of active disturbance rejection control technology based on simulink [J]. China Computer & Communication, 2019(1):167-171. [23] 郭雪梅, 南群, 翟飞,等. 肾动脉交感神经消融术治疗顽固性高血压研究现状[J]. 北京生物医学工程, 2014, 33(4):430-433. Guo XM, Nan Q, Zhai F, et al. Research status of renal artery sympathetic nerve ablation in the treatment of resistant hypertension[J]. Beijing biomedical engineering, 2014, 33(4):430-433. [24] 云泽荣. 基于自抗扰的低温恒温槽黑体温控系统研究[D]. 天津:天津理工大学,2019. Yun ZR. Research on temperature control system of bath blackbody radiation source based on ADRC[D]. Tianjin:Tianjin University of Technology, 2019. [25] 喻桂兰,彭宇宁.一种基于动态性能指标的数字控制算法[J].自动化与仪表,2010,25(7):5-8. Yu GL, Peng YN. A digital control method based on dynamic performance indicators[J]. Automation & Instrumentation,2010,25(7):5-8. [26] 文定都.基于ADRC的电加热炉温度控制系统[J].自动化与仪表,2014,29(4):36-39. Wen DD. Temperature control system of electric furnace based on ADRC [J]. Automation & Instrumentation,2014,29(4):36-39. [27] Baik J, Song WH, Yim D, et al. Laparoscopic renal denervation system for treating resistant hypertension: overcoming limitations of catheter-based approaches[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(12):3425-3437.
|