设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于自抗扰控制器的射频消融电极温度控制系统仿真研究

Simulation study on temperature control system of radiofrequency ablation electrode based on ADRC

作者: 程妍妍  田甄  张之帅  宋晓华  南群 
单位:北京工业大学环境与生命学部(北京 100124)<br />通信作者:南群,教授。E-mail: nanqun@ bjut. edu. cn
关键词: 射频消融;去肾交感神经术;温度控制;自抗扰控制器;仿真 
分类号:R318.04
出版年·卷·期(页码):2023·42·1(61-66)
摘要:

目的 将自抗扰控制器(active disturbance rejection controller,ADRC)应用于射频电极并探讨温度控制效果。方法 在MATLAB Simulink仿真平台,建立基于ADRC的射频电极温度控制系统,进行阶跃信号实验。加入幅值为2的阶跃信号扰动,以模拟不稳定的人体内环境。此外,将温度滞后时间τ、温度转换时间T和增益系数K值增加20%和50%,与同条件比例-积分-微分(proportion integration differentiation,PID)控制性能对比。结果(1)ADRC调节时间(15.38 s)较PID(18.68 s)短且超调为0。(2)τ与T值变化时,PID超调最大增量分别为3.55%和8.55%,但ADRC超调均为0;K 值变化时,ADRC虽出现超调,但同参数下的超调均较PID小。(3)各种参数变化下,两者受干扰后均能在30s内平稳快速达到设定值。结论 ADRC控制技术在射频电极温度控制中显示超调小、稳定速度快、抗干扰性及参数变化适应性,具有良好的调节能力。

Objective  To apply the active disturbance rejection controller (ADRC) ,and to explore its control effect.Methods The radiofrequency temperature control system based on ADRC was established on the MATLAB Simulink simulation platform, and the step signal test was carried out. A step signal disturbance with amplitude of 2 was added to simulate the unstable human body environment. In addition, the temperature lag time τ,temperature conversion time T and gain coefficient K increased by 20% and 50%. The results were compared with the PID control performance under the same conditions.Results  (1) The adjusting time of ADRC (15.38s) was shorter than PID (18.68s), and the overshoot was 0. (2) When the τ and T value changed,the maximum overshoot of PID was 3.55% and 8.55% respectively, but the overshoot of ADRC was 0. When the K value changed, ADRC overshoot occured, but the overshoot was smaller than PID under the same parameter. (3) Under various parameter changed, both ADRC and PID could reach the set value smoothly and quickly within 30s after being disturbed.Conclusions  ADRC control technology shows small overshoot, fast stability, anti-interference and parameter change adaptability in RF electrode temperature control, and has good adjustment ability. 

参考文献:

[1] AL Raisi SI, Pouliopoulos J, Swinnrnc J, et al. Renal artery denervation in resistant hypertension: the good, the bad and the future [J]. Heart, Lung Circulation. 2020, 29(1):94–101.
[2] Cosman ER. Radiofrequency lesions [M]. Berlin/Heidelberg: Springer- Verlag, 2009:1359-1382.
[3] Baik J, Seo S, Lee S, et al. Circular radio-frequency electrode with MEMS temperature sensors for laparoscopic renal sympathetic denervation[J]. IEEE transactions on bio-medical engineering, 2022, 69(1):256-264.
[4] Patel HC, Dhillon PS, Mahfoud F, et al. The biophysics of renal sympathetic denervation using radiofrequency energy [J]. Clinical Research in Cardiology, 2014, 103(5):337-344.
[5] Sakaoka A, Terao H, Nakamura S, et al. Accurate depth of radiofrequency-induced lesions in renal sympathetic denervation based on a fine histological sectioning approach in a porcine model[J]. Circulation-Cardiovascular Interventions. 2018, 11(2):1–8.
[6] 李慧杰, 杨成明, 余航,等. 肾交感神经射频消融术治疗高血压犬的适宜消融温度探讨[J]. 第三军医大学学报, 2012, 34(5):434-437.
Li HJ,Yang CM,Yu H, et al. Suitable ablation temperature for renal sympathetic-nerve ablation in treatment of hypertensive dogs [J]. Journal of Third Military Medical University, 2012, 34(5):434-437.
[7] Zhenglong W, Shaojie C, Tingquan Z, et al. Comparison of saline-irrigated catheter vs. temperature-controlled catheter for renal denervation in a canine model[J]. American Journal of Hypertension, 2015, 28(12): 1434-1443.
[8] Cohen-Mazor M, Mathur P, Stanley JRL, et al. Evaluation of renal nerve morphological changes and norepinephrine levels following treatment with novel bipolar radiofrequency delivery systems in a porcine model[J]. Journal of Hypertension, 2014, 32(8):1678-1692.
[9] Baik J, Kim H, Lee S, et al. Laparoscopic Ablation System for Complete Circumferential Renal Sympathetic Denervation[J]. IEEE Transactions on Bio-medical Engineering, 2021,68(11):3217-3227.
[10] Haemmerich D, Webster JG. Automatic control of finite element models for temperature-controlled radiofrequency ablation[J]. BioMedical Engineering OnLine, 2005, 4(1):1-8.
[11] 刘明. 肾交感神经射频消融仪温度控制系统的研究[D].哈尔滨:哈尔滨工业大学, 2012.
Liu M. Research on the temperature control system of radiofrequency ablation instrument for renal denervation[D]. Harbin :Harbin Institute of Technology, Harbin Institute of Technology, 2012.
[12] Zhang B, Moser M, Zhang EM, et al. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones[J]. International Journal of Hyperthermia, 2017, 33(4):367-377.
[13] Singh S, Repaka R. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models[J]. International Journal of Hyperthermia, 2017, 33(2):122-134.
[14] 张福强.基于嵌入式的人体射频温控系统的设计与实现[J].计算机测量与控制, 2012,20(11):2983-2985.
Zhang FQ. Design and implementation of temperature control system based on embedded RF [J]. Computer measurement and control, 2012, 20(11):2983-2985. 
[15] 陆宏伟,陈亚珠. 基于改进PID算法的射频消融治疗仪[J]. 北京生物医学工程, 2003,22(1):45-47.
Lu HW, Chen YZ. Improved PID Algorithm Based RF Ablation Therapeutic Instrument[J]. Beijing Biomedical Engineering, 2003, 22(1):45-47.
[16] 熊斌, 陈琦, 陈亚珠,等. 基于改进PID算法的多极射频消融治疗系统的研制[J].仪器仪表学报, 2002, 23(5):495-498.
Xiong B, Chen Q, Chen YZ, et al. The development of multi-pole RF ablation instrument based on improved PID algorithm[J]. Journal of Instrumentation, 2002, 23(5):495-498.
[17] 邵江华. 人体射频探头最优温度控制方法仿真分析[J]. 计算机仿真, 2016,33(5):304-307.
Shao JH. Simulation analysis of optimal temperature control method for human radio frequency probe[J]. ?Computer Simulation, 2016, 33(5):304-307.
[18] Cheng YY, Nan Q, Wang RR, et al. Fuzzy proportional integral derivative control of a radiofrequency ablation temperature control system[C]//10th International Congress on Image and Signal Processing (CISP-BMEI), China. 2018, 68(1), 515-518.
[19] 文定都.ADRC串级控制在电加热炉温度控制中的应用研究[J].仪表技术与传感器,2015(6):59-62.
Wen DD. Applied Research of ADRC cascade control in temperature control system of electric furnace[J]. Instrument Technique and Sensor, 2015(6):59-62.
[20] Sun D. Comments on active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3428-3429.
[21] Pu Z, Yuan R, Yi J, et.al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transaction on Industrial Electronics, 2015, 62(9): 5858-5869.
[22] 李岷钊. 基于Simulink对自抗扰控制技术的仿真分析[J]. 信息与电脑, 2019(1):167-171.
Li MZ. Simulation analysis of active disturbance rejection control technology based on simulink [J]. China Computer & Communication, 2019(1):167-171.
[23] 郭雪梅, 南群, 翟飞,等. 肾动脉交感神经消融术治疗顽固性高血压研究现状[J]. 北京生物医学工程, 2014, 33(4):430-433.
Guo XM, Nan Q, Zhai F, et al. Research status of renal artery sympathetic nerve ablation in the treatment of resistant hypertension[J]. Beijing biomedical engineering, 2014, 33(4):430-433.
[24] 云泽荣. 基于自抗扰的低温恒温槽黑体温控系统研究[D]. 天津:天津理工大学,2019.
Yun ZR. Research on temperature control system of bath blackbody radiation source based on ADRC[D]. Tianjin:Tianjin University of Technology, 2019.
[25] 喻桂兰,彭宇宁.一种基于动态性能指标的数字控制算法[J].自动化与仪表,2010,25(7):5-8.
Yu GL, Peng YN. A digital control method based on dynamic performance indicators[J]. Automation & Instrumentation,2010,25(7):5-8.
[26] 文定都.基于ADRC的电加热炉温度控制系统[J].自动化与仪表,2014,29(4):36-39.
Wen DD. Temperature control system of electric furnace based on ADRC [J]. Automation & Instrumentation,2014,29(4):36-39.
[27] Baik J, Song WH, Yim D, et al. Laparoscopic renal denervation system for treating resistant hypertension: overcoming limitations of catheter-based approaches[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(12):3425-3437.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com