设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
心肌细胞电脉冲作用下电场分布仿真结果与分析

Simulation results and analysis of electric field distribution under the action of electrical pulses in cardiac muscle cells

作者: 朱宇成  王群山  莫斌峰  牛金海 
单位:上海交通大学 生物医学工程学院(上海 &nbsp;200240)<br />上海交通大学医学院附属新华医院(上海 &nbsp;200092)<br />通信作者:牛金海,E-mail:jhniu@sjtu.edu.cn;莫斌峰,E-mail:mobinfeng@xinhuamed.com.cn&nbsp;
关键词: 心脏消融;心肌细胞;脉冲电场;电势分布;仿真分析 
分类号:R318.04
出版年·卷·期(页码):2023·42·1(67-73)
摘要:

目的 细胞电脉冲刺激仿真是研究心脏电脉冲消融的一种仿真方式,本文建立椭球形细胞电脉冲刺激仿真模型,模拟心肌细胞受到电脉冲刺激下的情况,研究电场入射方向和细胞长度对其电场分布和跨膜电位的影响。方法 通过COMSOL5.5软件进行仿真,以球形细胞模型为基础,在边长60μm的立方体空间中建立椭球形细胞模型。于垂直于Z轴的两面施加2.4 V电压,用以模拟心肌细胞在外加匀强电场作用下的电势分布情况。改变脉冲电场与细胞长轴的夹角,研究0、30°、60°、90°的不同电场入射角度对心肌细胞电势分布和跨膜电位的影响。保持入射角为0,研究跨膜电位最大值与细胞长轴直径的关系。结果 对于椭球形的心肌细胞,电场的入射角从0°增大到90°时,跨膜电位从1.068V减小至0.373V,同时最大跨膜电位的位置也发生改变。入射角为0°时,跨膜电位最大值V与细胞长轴直径D的线性回归方程为V_2=81.1916+38.6079D_2 ,r^2=0.9981。结论 电场入射角越大,细胞跨膜电位越低;细胞长轴直径越长,跨膜电位最大值越大。该研究对后续心肌细胞电脉冲刺激实验及心脏电脉冲消融的临床试验具有参考意义。

Objective Cell electrical pulse stimulation simulation is a method to study cardiac electrical pulse ablation. In this paper, an ellipsoidal cell electrical pulse stimulation simulation model is established to simulate the situation of myocardial cells stimulated by electrical pulses, and to study the electric field distribution direction and cell length on the electric field and transmembrane potential. Methods Using COMSOL5.5 software for simulation, based on the spherical cell model, an ellipsoidal cell model is established to simulate the potential distribution of cardiomyocytes under the action of a uniform electric field. Apply 2.4 V voltage on both sides perpendicular to the Z axis to simulate the potential distribution of myocardial cells under the action of an external uniform electric field. By changing the angle between the pulsed electric field and the long axis of the cell, the effects of different electric field incidence angles of 0 °, 30 °, 60 ° and 90 ° on the potential distribution and transmembrane potential of the myocardial cell are studied. The relationship between the maximum transmembrane potential and the diameter of the long axis of cells is studied by keeping the angle of incidence at 0.Results For ellipsoidal cardiomyocytes, when the incidence angle of the electric field increases from 0 ° to 90 °, the transmembrane potential decreases from 1.068V to 0.373V, and the position of the maximum transmembrane potential also changes. When the incidence angle of the electric field is 0 °, the linear regression equation between the maximum transmembrane potential V and the cell long axis diameter D is V_2=81.1916+38.6079D_2 ,r^2=0.9981. Conclusions The greater the incident angle of electric field, the lower the transmembrane potential of cells; The longer the cell long axis diameter is, the greater the transmembrane potential is. This study has reference significance for the subsequent experiment of myocardial cell electric pulse stimulation and the clinical trial of cardiac electric pulse ablation.

参考文献:

[1]陈琳琳,衣少雷,王蔚宗,等.预测心房颤动患者射频消融术后复发的危险因素[J].山东大学学报(医学版),2019,57(3):49-57.
Chen LL, Yi SL,Wang WZ, et al. Risk factors of recurrent atrial fibrillation after adiofrequency catheter ablation[J]. Journal of Shandong University(Health Sciences),2019,57(3):49-57.
[2]曾宝玉. 双极射频消融房颤的热损伤过程分析及实验研究[D].上海:上海交通大学,2016.
Zeng BY. Study on thethremal damage process and experimental analysis of bipolar radiofrequency ablation for atrial fibrillation[D].Shanghai:Shanghai Jiao Tong University,2016.
[3]孙钢.不可逆电穿孔技术消融肿瘤研究进展[J].介入放射学杂志,2015,24(4):277-281.
Sun G. Irreversible electroporation technology for ablation treatment of tumors: recent progress in research[J]. Journal of Interventional Radiology,2015,24(4):277-281.
[4]Chiapperino MA, Mescia L, Bia P, et al. Experimental and numerical study of electroporation induced by long monopolar and short bipolar pulses on realistic 3d irregularly shaped cells[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(10): 2781-2788.
[5]Reddy VY, Neuzil P, Koruth JS, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation[J]. Journal of the American College of Cardiology,2019,74(3): 315-326.
[6]Reddy VY, Koruth J, Jais P, et al. Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation[J]. JACC: Clinical Electrophysiology, 2018, 4(8): 987-995.
[7]Anic A, Breskovic T, Sikiric I. Pulsed field ablation: a promise that came true[J]. Current Opinion in Cardiology, 2021, 36(1): 5-9.
[8]Wittkampf FH, Van Driel VJ, van Wessel H, et al. Feasibility of electroporation for the creation of pulmonary vein ostial lesions[J]. Journal of Cardiovascular Electrophysiology, 2011, 22(3): 302-309.
[9]Zager Y, Kain D, Landa N, et al. Optimization of irreversible electroporation protocols for in-vivo myocardial decellularization[J]. PLoS One, 2016, 11(11): e0165475.
[10]Neven, Kars, Wessel H, et al. Epicardial linear electroporation ablation and lesion size[J]. Heart Rhythm,2014, 11 8:1465-1470 .
[11]郭飞,姚陈果,李成祥,等.包含频率色散效应的细胞膜和核膜跨膜电位的仿真[J].电工技术学报,2013,28(11):182-188.
Guo F,Yao CG,Li CX,ctl.Simulation study of trans-membrane potential of plasma and nuclear membranes with frequency-dispersion[J].Transactions of China Electrotechnical Society,2013,28(11):182-188.
[12]姚陈果,吕彦鹏,赵亚军,等.基于能量概率与微孔力模型的脉冲电场对细胞电穿孔动态过程的仿真分析[J].电工技术学报,2016,31(23):141-149.
Yao CG,Lv YP,Zhao YJ,et al.Simulation analysis on dynamic process of electroporation by the model based on energy probability and pore force in cell exposed to pulsed electric field[J].Transactions of China Electrotechnical Society,2016,31(23):141-149.
[13]郭飞,张琳,刘欣,彭豪.基于电穿孔和孔径变化方程的球形细胞微孔特性研究[J].中国生物医学工程学报,2020,39(5):577-586.
Guo F,Zhang L,Liu X,et al.Simulation analysis of microporous characteristics of spherical cells based on electroporation and pore radii change equation[J].Chinese Journal of Biomedical Engineering,2020,39(5):577-586.
[14]郭志坤.现代心脏组织学[M].北京:人民卫生出版社, 2007.
Guo ZK. Modern heart histology[M]. Beijing: People's Medical Publishing House, 2007.
[15]Schoenbach KH, Katsuki S, Stark RH,et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002,30(1): 293-300.
[16]胡亚哲,程邦昌,王和平,等.运动性心脏肥大心肌细胞超微结构改变及意义[J].中华心血管病杂志,2005,33(10):69-72.
Hu YZ,Cheng BC,Wang HP,et al.The ultrastructure change of cardiomyocyte in athlete’s heart[J].Chinese Journal of Cardiology,2005,33(10):69-72.
[17]刘宏亮,米彦,徐进,等.基于网格传输网络模型的纳秒脉冲作用下单细胞电穿孔规律仿真研究[J].高电压技术,2018,44(2):624-632.
Liu HL,Mi Y,Xu J,et al.Simulation study on electroporation law in a single-cell system exposed to nanosecond pulsed electric fields based on mesh transport network model[J].High Voltage Engineering,2018,44(2):624-632.
[18]Iwona K,Malgorzata K, Anna S,et al. Electroporation-induced changes in normal immature rat myoblasts (H9C2)[J]. General physiology and Biophysics,2012,31(1): 19-25.
[19]张玉,郭飞.纳秒脉冲脉宽参数与细胞凋亡的量效关系研究[J].重庆医学,2021,50(5):721-726.
Zhang Y,Guo F.Study of dose-effect relationship between the pulse duration of nanosecond pulsed electric field and cell apoptosis[J].Chongqing Medicine,2021,50(5):721-726.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com