设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
生物组织收缩在微波消融术中的研究进展

Research progress of biological tissue shrinkage in microwave thermal ablation

作者: 买欣  南群  胡昊  田甄 
单位:北京工业大学环境与生命学部生命科学与化学学院(北京 &nbsp;100124)<br />通信作者:南群,教授。E-mail: nanqun@ bjut. edu. cn
关键词: 肿瘤;微波消融;生物组织收缩;体外实验;收缩模型 
分类号:R318.04
出版年·卷·期(页码):2023·42·1(94-99)
摘要:

微波消融治疗技术具有微创、操作简便、热效率高、患者耐受性好等优点,目前已经成为治疗肿瘤的重要手段。在微波消融过程中,不同生物组织受热会发生不同程度的收缩,影响到消融区域的大小。而生物组织消融区域对评估治疗疗效至关重要,同时在提高临床治疗的有效性和安全性方面也起着重要作用。因此,研究生物组织收缩具有重要的临床意义。本文首先分析了生物组织收缩的理论基础;其次对现有生物组织收缩的体外实验和数学模型进行了评估和分析;最后总结了目前相关生物组织收缩研究中所存在的局限性,并提出了今后的研究方向。

Microwave ablation(MWA) therapy technology has the advantages of minimal invasiveness, simple operation, high thermal efficiency, and good patient tolerance. It has become an important method for the treatment of tumors. During the microwave ablation process, different biological tissues will shrink to different degrees when heated, which affects the size of the ablation area. The area of biological tissue ablation is very important for evaluating the efficacy of treatment, and it also plays an important role in improving the effectiveness and safety of clinical treatment. Therefore, studying the shrinkage of biological tissues has important clinical significance. This article first analyzes the theoretical basis of biological tissue shrinkage; secondly, it evaluates and analyzes the in vitro experiments and mathematical models of the existing biological tissue shrinkage; finally, it summarizes the limitations of the current related biological tissue shrinkage research and proposes future researh directions.

参考文献:

[1]杜广星,邓小龙,刘珈.微波消融技术进展综述[J].生命科学仪器,2020,18(1):9-17.
Du GX,Deng XL,Liu J. Application and development of microwave ablation[J]. Life Science Instruments,2020,18(1):9-17.
[2] 胡昊,田甄,南群.肺肿瘤微波消融治疗效果影响因素的研究现状[J].北京生物医学工程,2020,39(6):643-649.
Hu H,Tian Z,Nan Q. Research status of influence factors in therapeutic effect of microwave ablation for lung tumors[J].Beijing Biomedical Engineering,2020,39(6):643-649.
[3] 陈凯,方主亭.热消融在肺癌中的应用和展望[J].中华介入放射学电子杂志,2019,7(02):126-129.
[4] Brace CL . Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?[J]. Current Problems in Diagnostic Radiology, 2009, 38(3):135-143.
[5] 高翔,陈仕林,刘静纨,冯国栋,张静渊,南群.基于CT的兔肺肿瘤微波消融的温度场研究[J].北京生物医学工程,2020,39(4):372-379.
Gao X,Chen ShL,Liu JW.et al.Temperature field of microwave ablation of rabbit lung tumors based on CT[J].Beijing Biomedical Engineering,2020,39(4):372-379.
[6] Lee JK, Siripongsakun S, Bahrami S , et al. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation[J]. Abdominal Radiology, 2016,41(4):659-666.
[7] Ziemlewicz TJ, Wells SA,Lubner MA,et al. Microwave Ablation of Giant Hepatic Cavernous Hemangiomas[J]. CardioVascular and Interventional Radiology, 2014,37(5):1299-1305.
[8] Moreland AJ,Ziemlewicz TJ,Best SL,et al. High-powered microwave ablation of t1a renal cell carcinoma: safety and initial clinical evaluation.[J]. Journal of Endourology, 2014,28(9):1046-1052.
[9] Brace CL, Diaz TA,Hinshaw JL,et al. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung[J]. Journal of Vascular & Interventional Radiology Jvir,2010,21(8):1280-1286.
[10] Sommer CM, Sommer SA,Mokry T,et al. Quantification of tissue shrinkage and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume[J]. Journal of Vascular & Interventional Radiology Jvir, 2013, 24(8):1241-1248.
[11] Farina L,Weiss N,Nissenbaum Y, et al. Characterisation of tissue shrinkage during microwave thermal ablation[J]. International Journal of Hyperthermia,2014,30(7):419-428.
[12] Liu D,Brace CL.CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction[J]. Medical Physics,2014,41(11):113-122.
[13] Liu C, Park CS,Hall SK,et al. Mathematical model of the post-ablation enhancement zone as a tissue-level oedematic response[J]. International Journal of Hyperthermia,2016,33(2):111-121.
[14] Park,Chang S,Liu, et al.A thermoelastic deformation model of tissue contraction during thermal ablation[J]. International Journal of Hyperthermia:The official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 2018,34(3):221-228.
[15] Kabiri A, Talaee MR.Theoretical investigation of thermal wave model of microwave ablation applied in prostate Cancer therapy[J]. Heat and mass transfer, 2019, 55(8):2199-2208.
[16] Rossmann C, Garrett-Mayer E,Rattay F , et al. Dynamics of tissue shrinkage during ablative temperature exposures[J]. Physiological Measurement,2014,35(1):55-67.
[17] 张烨,钱志余,郭金涛,等.肿瘤微波热消融有效毁损区域温度场分布的仿真研究[J].生物物理学报,2012,28(9):763-770.
Zhang Y,Qian ZY,Guo JT,et al.Simulation on temperature distribution of effective lesion area for tumor microwave ablation thermotherapy[J]. Acta Biophysica Sinica,2012,28(9):763-770.
[18] 赵磊,绳秀君,吴水才,等. 肿瘤热疗中组织热物性参数对热场分布的影响[J]. 中国医疗设备,2009,24(4):15-17.
Zhao L,Sheng XJ,Wu SC,et al.Effect of thermal properties of biologic tissue during microware hyperthermia[J]. China Medical Devices,2009,24(4):15-17.
[19] Tosoratti,Nevio, Farina, et al.Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2017,33(1):101-109.
[20] Liu D, Brace CL.Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose[J]. Physics in Medicine & Biology,2017,62(6):2070-2086.
[21] Farina L, Nissenbaum Y, Goldberg S N , et al. Tissue shrinkage in microwave ablation: ex vivo predictive model validation[J].International Journal of Hyperthermia,2018,33(1):101-109.
[22] LoprestoV,Strigari L. CT-based investigation of the contraction of ex vivo tissue undergoing microwave thermal ablation[J]. Physics in Medicine & Biology,2018,63(5):64-70.
[23] Singh S , Melnik R .Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions[J]. Electromagnetic Biology and Medicine,2020,39(2):1-40.
[24] Keangin P, Wessapan T, Rattanadecho P. Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna[J]. Applied Thermal Engineering,2011, 31(16):3243-3254.
[25] Deshazer, Garron, Haemmerich,et al. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations[J]. International journal of hyperthermia: The official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,2017,33(1):74-82.
[26] Park CS, Hall SK, Liu C, et al. A model of tissue contraction during thermal ablation.[J]. Physiological Measurement,2016,37(9):1474-1484.
[27] Chen SS,Wright NT. Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue.[J]. IEEE Transactions On Biomedical Engineering,1998,45(10):1234-1240.
[28] Bharat S, Techavipoo U, Kiss MZ,et al. Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation[J]. Ultrasound in Medicine & Biology,2005,31(3):415-422.
[29] Chui C, Ko Ba Yashi E, Chen X, et al. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling.[J]. Medical & Biological Engineering & Computing,2007, 45(1):99-106.
[30] Haemmerich D, Ozkan R, Tungjitkusolmun S, et al.Changes in electrical resistivity of swine liver after occlusion and postmortem[J]. Medical & Biological Engineering & Computing,2002,40(1):29-33.
[31] 黄伟,马幸生,刘勇恩.微波消融术在肺癌中的应用[J].中国胸心血管外科临床杂志,2015,22(3):265-268.
Huang W,Ma XS,Liu YE. Application of microwave ablation for lung cancer[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery,2015,22(3):265-268.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com