[1] Small W, Bacon MA, Bajaj A, et al. Cervical cancer: a global health crisis[J]. Cancer, 2017, 72 (11): 654 – 655. [2] Uma P, Pooja B. What is cervical cancer[J]. Gynecol Women's Health, 2017, 2 (5): 555 - 599. [3] Marth C, Landoni F, Mahner S. Corrections to "cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up"[J]. Annals of Oncology, 2018, 29 (4): 262 - 262. [4] 陈蓦, 陈俊, 陈世益. 基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40 (4): 530 - 533. Chen M, Chen J, Chen SY. Advances in second near-infrared fluorescent nanoprobes-based in vivo imaging for biomedical applications[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 40 (4): 530 - 533. [5] 苏哲, 秦文璟, 白磊, 等. 近红外二区荧光探针在生物成像领域的研究进展[J]. 应用化学, 2019, 36 (2): 123 - 136. Su Z, Qin WJ, Bai L, et al. Research progress on bioimaging with the second near-infrared fluorescence probes[J]. Chinese Journal of Applied Chemistry, 2019, 36 (2): 123 - 136. [6] Zebibula A, Alifu N, Xia L, et al. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging[J]. Advanced Functional Materials, 2018, 28 (9): 161 - 173. [7] 刘丹丹, 罗林. 近红外荧光成像技术在外科手术中的研究进展[J]. 中国肿瘤临床, 2020, 47 (6): 318 - 321. Liu DD, Luo L. Research progress of near-infrared fluorescence imaging technology in surgery[J]. Chinese Journal of Clinical Oncology, 2020, 47 (6): 318 - 321. [8] de Vasconcelos LM, de Andrade PMI, Cabral Filho PE, et al. Studies on toxicity of suspensions of CdTe quantum dots to biomphalaria glabrata mollusks[J]. Environmental Toxicology and Chemistry, 2019, 38 (10): 2128 - 2136. [9] Goornavar V, Biradar S, Ezeagwu C, et al. Toxicity of raw and purified single-walled carbon nanotubes in rat's lung epithelial and cervical cancer cells[J]. Journal of nanoscience and nanotechnology, 2015, 15 (21): 5 - 14. [10] Wagner AM, Knipe JM, Orive G, et al. Quantum dots in biomedical applications[J]. Acta Biomaterialia, 2019, 94: 44 - 63. [11] Zhao DH, Yang XQ, Hou XL, et al. In situ aqueous synthesis of genetically engineered polypeptide-capped Ag2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2019, 7 (15): 2484 - 2492. [12] Ding F, Fan Y, Sun Y, et al. Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deepmilissue molecular imaging[J]. Advanced Healthcare Materials, 2019, 8 (14): e1900260. [13] Li XL, Jiang MY, Li YB, et al. 808?nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 100: 260 - 268. [14] Ding F, Zhang Y, Lu X, et al. Recent advances in near-infrared II fluorescence for multifunctional biomedical imaging[J]. Chemical Science, 2018, 9 (19): 4370 - 4380. [15] Sheng Z, Guo B, Hu DH, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors[J]. Advanced Materials, 2018, 30 (29): e1800766. [16] 王天威, 马媛, 史学芳, 等. 噁二唑罗丹明荧光染料对Hela细胞和U937细胞染色效果研究[J]. 南开大学学报(自然科学版), 2016, 49 (2): 36 - 42. Ma TW, Ma Y, Shi XF, et al. The staining efficiency study of rhodamine-oxadiazole fluorescent dye to HeLa cells and U937 cells[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2016, 49 (2): 36 - 42. [17] 陈秀丽, 周韵, 梁欣, 等. 载黑磷量子点脂质体用于宫颈癌光热治疗的体外研究[J]. 药学学报, 2019, 54 (4): 729 - 736. Chen XL, Zhou Y, Liang X, et al. In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer[J]. Acta Pharmaceutica Sinica, 2019, 54 (4): 729 - 736. [18] Tian RM, Huilong ZS, Zhu SJ, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery[J]. Advanced Materials, 2020, 32 (11): e1907365. [19] Wang PY, Fan Y, Lu LF, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J] . Nature Communication, 2018, 9 (1): 2898. [20] Ma R, Alifu N, Du Z, et al. Indocyanine green-based theranostic nanoplatform for NIR fluorescence image-guided chemo/photothermal therapy of cervical cancer[J]. International Journal of Nanomedicine, 2021, 16: 4847 - 4861. [21] Ghani KA, Sudik S, Omar AF, et al. VIS-NIR spectral signature and quantitative analysis of HeLa and DU145 cell line[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117241. [22] 蒙秀婷, 韦珍, 郭豪. 前哨淋巴结活检术在早期宫颈癌临床应用研究进展[J]. 世界最新医学信息文摘, 2019, 19 (63): 93 - 94, 96. Meng XT, Wei Z, Guo H. Clinical application of sentinel lymph node biopsy in early cervical cancer[J]. World latest medical information digest, 2019, 19 (63): 93-94, 96. [23] Frumovitz ML, Plante M, Lee PS, et al. Near-infrared fluorescence for detection of sentinel lymph nodes in women with cervical and uterine cancers (FILM): a randomised, phase 3, multicentre, non-inferiority trial[J]. Lancet Oncology, 2018, 19 (10): 1394 - 1403. [24] Zeng XD, Xiao YL, Lin JC, et al. Near-infrared II dye-protein complex for biomedical imaging and imaging - guided photothermal therapy[J]. Advanced Healthcare Materials, 2018, 7 (18): e1800589. [25] Wan Y, Lu GH, Wei WC, et al. Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometer and high reactive oxygen species yield for multi-modality phototheranostics[J]. ACS Nano, 2020, 14 (8), 9917 – 9928. [26] Bilici K, Muti A, Demir Duman F, et al. Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730-840 nm spectral region[J]. Photochemical & photobiological sciences, 2018, 17 (11): 1787 - 1793. [27] Wang X, Li H, Li F, et al. Prussian blue-coated lanthanide-doped core/shell/shell nanocrystals for NIR-II image-guided photothermal therapy[J]. Nanoscale, 2019, 11 (45): 22079 - 22088. [28] Wang SW, Chen H, Liu J, et al. NIR-II light activated photosensitizer with aggregation-induced emission for precise and efficient two-photon photodynamic cancer cell ablation[J]. Advanced Functional Materials, 2020, 30 (30): 2002546.1 - 2002546.11. [29] Wang Q, Dai Y, Xu J, et al. All-in-one phototheranostics single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials, 2019, 29 (31): 1901480.1 - 1901480.12. [30] Deng XR, Liang S, Cai XC, et al. Yolk-shell structured au nanostar@metal-organic framework for synergistic chemo-photothermal therapy in the second near-infrared window[J]. Nano Letters, 2019, 19 (10): 6772 - 6780. [31] Kumar B, Murali A, Mattan I, et al. Near-infrared-triggered photodynamic, photothermal, and on demand chemotherapy by multifunctional upconversion nanocomposite[J]. Journal of Physical Chemistry B, 2019, 123 (17): 3738 - 3755.
|