设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
近红外二区荧光探针在宫颈癌成像与治疗中的应用

Application of near-infrared-Ⅱ fluorescent probe in imaging and treatment of cervical cancer

作者: 古丽妮尕尔·阿里木  闫婷  朱丽君  樊慧敏  努尔尼沙·阿力甫  张学良 
单位:新疆医科大学 公共卫生学院(新疆 乌鲁木齐 830011);<br />新疆医科大学 医学工程技术学院(新疆 乌鲁木齐 830011)<br />通信作者:努尔尼沙?阿力甫,E-mail: 11530034@zju.edu.cn;&nbsp;<br />张学良,E-mail: shuxue2456@126.com
关键词: 近红外二区;荧光成像技术;宫颈癌;荧光探针;成像与治疗 
分类号:R318.04
出版年·卷·期(页码):2023·42·1(100-105)
摘要:

宫颈癌是最常见的妇科恶性肿瘤之一,早期、有效的诊断与治疗对提高患者生存率及生活质量具有重要意义。荧光成像已被广泛应用于癌症的早期检测,但由于光在深层组织内传播时,受穿透深度和散射的影响,不利于实现深层组织高清成像。近红外二区((near-infrared-Ⅱ,NIR-Ⅱ; 1000 - 1700 nm)成像技术与近红外一区(near-infrared-I, NIR-I;760 - 900 nm)成像技术相比,具备更高的信噪比和对比度,更低的自发荧光和更高的空间分辨率,是当前光学、生物医学等多学科的研究热点,非常适合宫颈癌的高质量荧光成像。高质量的荧光成像需要借助良好的荧光探针来精确定位肿瘤组织及其边界并监测治疗过程。目前已开发了一系列基于有机和无机材料的NIR-Ⅱ荧光探针。本文概述了几种典型的NIR-II荧光探针及其辅助的NIR-II荧光成像技术在宫颈癌成像及治疗方面的应用。

Cervical cancer is one of the most common gynecological malignant tumors. Early diagnosis and treatment are of great significance to improve the survival rate and quality of life of patients. Fluorescence imaging has been widely used in the early detection of cancer. However, due to the scattering of light when propagates in deep tissues, the resolution of the imaging quality is limited. Compared with the light in the first near-infrared spectral window (NIR-I, 760 - 900 nm), the light in the second near-infrared (NIR-II, 1000 - 1700 nm) spectral window greatly overcomes the problem of photon scattering, which endow the NIR-II imaging deeper tissue penetration, higher signal-to-noise ratio and spatial resolution. Thus NIR-II fluorescence imaging is currently a hot topic of multi-disciplinary research in optics, biomedicine-related fields, as well as ideal for imaging of cervical cancer. Fluorescence probes are of great importance for the high-quality fluorescence imaging which can accurately locate the tumor site with boundaries clearly and monitor the treatment process. This paper summarizes the research progress of several typical kinds of NIR-II fluorescence probes, and the probes assisted NIR-II fluorescence imaging and therapy of cervical cancer. 

参考文献:

[1] Small W, Bacon MA, Bajaj A, et al. Cervical cancer: a global health crisis[J]. Cancer, 2017, 72 (11): 654 – 655.
[2] Uma P, Pooja B. What is cervical cancer[J]. Gynecol Women's Health, 2017, 2 (5): 555 - 599.
[3] Marth C, Landoni F, Mahner S. Corrections to "cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up"[J]. Annals of Oncology, 2018, 29 (4): 262 - 262.
[4] 陈蓦, 陈俊, 陈世益. 基于近红外二区荧光纳米探针的活体光学成像技术在生物医学应用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40 (4): 530 - 533.
Chen M, Chen J, Chen SY. Advances in second near-infrared fluorescent nanoprobes-based in vivo imaging for biomedical applications[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 40 (4): 530 - 533.
[5] 苏哲, 秦文璟, 白磊, 等. 近红外二区荧光探针在生物成像领域的研究进展[J]. 应用化学, 2019, 36 (2): 123 - 136.
Su Z, Qin WJ, Bai L, et al. Research progress on bioimaging with the second near-infrared fluorescence probes[J]. Chinese Journal of Applied Chemistry, 2019, 36 (2): 123 - 136.
[6] Zebibula A, Alifu N, Xia L, et al. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging[J]. Advanced Functional Materials, 2018, 28 (9): 161 - 173.
[7] 刘丹丹, 罗林. 近红外荧光成像技术在外科手术中的研究进展[J]. 中国肿瘤临床, 2020, 47 (6): 318 - 321.
Liu DD, Luo L. Research progress of near-infrared fluorescence imaging technology in surgery[J]. Chinese Journal of Clinical Oncology, 2020, 47 (6): 318 - 321.
[8] de Vasconcelos LM, de Andrade PMI, Cabral Filho PE, et al. Studies on toxicity of suspensions of CdTe quantum dots to biomphalaria glabrata mollusks[J]. Environmental Toxicology and Chemistry, 2019, 38 (10): 2128 - 2136.
[9] Goornavar V, Biradar S, Ezeagwu C, et al. Toxicity of raw and purified single-walled carbon nanotubes in rat's lung epithelial and cervical cancer cells[J]. Journal of nanoscience and nanotechnology, 2015, 15 (21): 5 - 14.
[10] Wagner AM, Knipe JM, Orive G, et al. Quantum dots in biomedical applications[J]. Acta Biomaterialia, 2019, 94: 44 - 63.
[11] Zhao DH, Yang XQ, Hou XL, et al. In situ aqueous synthesis of genetically engineered polypeptide-capped Ag2S quantum dots for second near-infrared fluorescence/photoacoustic imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2019, 7 (15): 2484 - 2492.
[12] Ding F, Fan Y, Sun Y, et al. Beyond 1000 nm emission wavelength: recent advances in organic and inorganic emitters for deepmilissue molecular imaging[J]. Advanced Healthcare Materials, 2019, 8 (14): e1900260.
[13] Li XL, Jiang MY, Li YB, et al. 808?nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 100: 260 - 268.
[14] Ding F, Zhang Y, Lu X, et al. Recent advances in near-infrared II fluorescence for multifunctional biomedical imaging[J]. Chemical Science, 2018, 9 (19): 4370 - 4380.
[15] Sheng Z, Guo B, Hu DH, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors[J]. Advanced Materials, 2018, 30 (29): e1800766.
[16] 王天威, 马媛, 史学芳, 等. 噁二唑罗丹明荧光染料对Hela细胞和U937细胞染色效果研究[J]. 南开大学学报(自然科学版), 2016, 49 (2): 36 - 42.
Ma TW, Ma Y, Shi XF, et al. The staining efficiency study of rhodamine-oxadiazole fluorescent dye to HeLa cells and U937 cells[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2016, 49 (2): 36 - 42.
[17] 陈秀丽, 周韵, 梁欣, 等. 载黑磷量子点脂质体用于宫颈癌光热治疗的体外研究[J]. 药学学报, 2019, 54 (4): 729 - 736.
Chen XL, Zhou Y, Liang X, et al. In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer[J]. Acta Pharmaceutica Sinica, 2019, 54 (4): 729 - 736.
[18] Tian RM, Huilong ZS, Zhu SJ, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery[J]. Advanced Materials, 2020, 32 (11): e1907365.
[19] Wang PY, Fan Y, Lu LF, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J] . Nature Communication, 2018, 9 (1): 2898.
[20] Ma R, Alifu N, Du Z, et al. Indocyanine green-based theranostic nanoplatform for NIR fluorescence image-guided chemo/photothermal therapy of cervical cancer[J]. International Journal of Nanomedicine, 2021, 16: 4847 - 4861.
[21] Ghani KA, Sudik S, Omar AF, et al. VIS-NIR spectral signature and quantitative analysis of HeLa and DU145 cell line[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117241.
[22] 蒙秀婷, 韦珍, 郭豪. 前哨淋巴结活检术在早期宫颈癌临床应用研究进展[J]. 世界最新医学信息文摘, 2019, 19 (63): 93 - 94, 96.
Meng XT, Wei Z, Guo H. Clinical application of sentinel lymph node biopsy in early cervical cancer[J]. World latest medical information digest, 2019, 19 (63): 93-94, 96.
[23] Frumovitz ML, Plante M, Lee PS, et al. Near-infrared fluorescence for detection of sentinel lymph nodes in women with cervical and uterine cancers (FILM): a randomised, phase 3, multicentre, non-inferiority trial[J]. Lancet Oncology, 2018, 19 (10): 1394 - 1403.
[24] Zeng XD, Xiao YL, Lin JC, et al. Near-infrared II dye-protein complex for biomedical imaging and imaging - guided photothermal therapy[J]. Advanced Healthcare Materials, 2018, 7 (18): e1800589.
[25] Wan Y, Lu GH, Wei WC, et al. Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometer and high reactive oxygen species yield for multi-modality phototheranostics[J]. ACS Nano, 2020, 14 (8), 9917 – 9928.
[26] Bilici K, Muti A, Demir Duman F, et al. Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730-840 nm spectral region[J]. Photochemical & photobiological sciences, 2018, 17 (11): 1787 - 1793.
[27] Wang X, Li H, Li F, et al. Prussian blue-coated lanthanide-doped core/shell/shell nanocrystals for NIR-II image-guided photothermal therapy[J]. Nanoscale, 2019, 11 (45): 22079 - 22088.
[28] Wang SW, Chen H, Liu J, et al. NIR-II light activated photosensitizer with aggregation-induced emission for precise and efficient two-photon photodynamic cancer cell ablation[J]. Advanced Functional Materials, 2020, 30 (30): 2002546.1 - 2002546.11.
[29] Wang Q, Dai Y, Xu J, et al. All-in-one phototheranostics single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials, 2019, 29 (31): 1901480.1 - 1901480.12.
[30] Deng XR, Liang S, Cai XC, et al. Yolk-shell structured au nanostar@metal-organic framework for synergistic chemo-photothermal therapy in the second near-infrared window[J]. Nano Letters, 2019, 19 (10): 6772 - 6780.
[31] Kumar B, Murali A, Mattan I, et al. Near-infrared-triggered photodynamic, photothermal, and on demand chemotherapy by multifunctional upconversion nanocomposite[J]. Journal of Physical Chemistry B, 2019, 123 (17): 3738 - 3755.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com