设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于对抗适应网络的跨个体肌电手势识别方法

Cross-subject hand gesture recognition with surface electromyography based on adversarial adaptation network

作者: 朱九英  米红林  付佳杰 
单位:上海电子信息职业技术学院(上海 201411)<br />通信作者:朱九英。E-mail: 82881135@qq.com
关键词: 表面肌电信号;手势识别;人机交互;跨个体对抗适应网络 
分类号:R318.04
出版年·卷·期(页码):2023·42·2(124-129)
摘要:

目的 表面肌电信号可以直接反映用户的动作意图,近年来已经成为手势识别等人机交互任务的主要控制信号。然而,个体差异性使得用户模型不能通用,限制了其应用与发展。为了解决这个问题,论文提出了一种新的跨个体对抗适应网络(cross-subject adversarial adaptation network, CAAN)。方法 该网络包括特征编码器、手势分类器和个体分类器3个子模块,使用了新的对抗性适应训练方法训练网络,达到分离出个体私有特征的目标。CAAN网络在采集的数据集上进行训练和测试,数据集包括11名受试者的6种手势。结果 实验结果表明,方法的手势识别准确率达到88.08%,通过比较,该方法的性能优于现有的方法。结论 本文提出的CAAN网络可有效进行跨个体手势识别,为人机交互提供可靠的技术。

Objective Intra-subject hand gestures recognition based on surface electromyography has been extensively researched in current years, however, the gesture recognition on cross-subject tasks has more broad application prospects. Methods For addressing this problem, we propose a novel cross-subject adversarial adaptation network (CAAN), which fulfills the intra-subject gesture recognition task. An adversarial adaptation training method is developed to train the network to encourage the emergence of the features that are discriminative and subject-independent. The CAAN is evaluated on the collected dataset (including six gestures from eleven subjects). Results The experimental results show that the proposed method outperforms state-of-arts, which achieving offline accuracies at 88.08% respectively. Conclusions The proposed CAAN can effectively carry out cross-subject gesture recognition and provide reliable technology for human-computer interaction.

参考文献:

[1] Zhang Z, Yang K, Qian J, et al. Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network[J]. Sensors, 2019, 19(14): 3170.?
[2] Zhang Z, He C, Yang K. A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network[J]. Sensors, 2020, 20(14): 3994.
[3] Geng W, Du Y, Jin W, et al. Gesture recognition by instantaneous surface EMG images[J]. Scientific Reports, 2016, 6(1): 36571.
[4] Hu Y, Wong Y, Wei W, et al. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition[J]. PLoS One, 2018, 13(10): e0206049.
[5] C?té-Allard U, Fall CL, Drouin A, et al. Deep learning for electromyographic hand gesture signal classification using transfer learning[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4): 760-771.
[6] Chen X, Li Y, Hu R, et al. Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(4): 1292-1304.
[7] Yasen M, Jusoh S. A systematic review on hand gesture recognition techniques, challenges and applications[J]. PeerJ Computer Science, 2019, 5: e218.
[8] Xie B, Meng J, Li B, et al. Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control[J]. Computer Methods and Programs in Biomedicine, 2022, 224: 106999.
[9] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
[10] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2020). Seattle, WA, USA: IEEE Press, 2014: 1725-1732.
[11] Benalcázar ME, Motoche C, Zea JA, et al. Real-time hand gesture recognition using the myo armband and muscle activity detection[C]//2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). Salinas, Ecuador: IEEE Press, 2017: 1-6.
[12] Atzori M, Cognolato M, Müller H. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands[J]. Frontiers in Neurorobotics, 2016, 10: 9.
[13] Colli-Alfaro JG, Ibrahim A, Trejos AL. Design of user-independent hand gesture recognition using multilayer perceptron networks and sensor fusion techniques[C]// 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). Toronto, ON, Canada: IEEE Press, 2019: 1103-1108.
[14] Du Y, Jin W, Wei W, et al. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation[J]. Sensors, 2017, 17(3): 458.
[15] Kim M, Chung WK, Kim K. Subject-independent sEMG pattern recognition by using a muscle source activation model[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5175-5180.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com