[1] Zhang Z, Yang K, Qian J, et al. Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network[J]. Sensors, 2019, 19(14): 3170.? [2] Zhang Z, He C, Yang K. A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network[J]. Sensors, 2020, 20(14): 3994. [3] Geng W, Du Y, Jin W, et al. Gesture recognition by instantaneous surface EMG images[J]. Scientific Reports, 2016, 6(1): 36571. [4] Hu Y, Wong Y, Wei W, et al. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition[J]. PLoS One, 2018, 13(10): e0206049. [5] C?té-Allard U, Fall CL, Drouin A, et al. Deep learning for electromyographic hand gesture signal classification using transfer learning[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4): 760-771. [6] Chen X, Li Y, Hu R, et al. Hand gesture recognition based on surface electromyography using convolutional neural network with transfer learning method[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(4): 1292-1304. [7] Yasen M, Jusoh S. A systematic review on hand gesture recognition techniques, challenges and applications[J]. PeerJ Computer Science, 2019, 5: e218. [8] Xie B, Meng J, Li B, et al. Biosignal-based transferable attention Bi-ConvGRU deep network for hand-gesture recognition towards online upper-limb prosthesis control[J]. Computer Methods and Programs in Biomedicine, 2022, 224: 106999. [9] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030. [10] Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2020). Seattle, WA, USA: IEEE Press, 2014: 1725-1732. [11] Benalcázar ME, Motoche C, Zea JA, et al. Real-time hand gesture recognition using the myo armband and muscle activity detection[C]//2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). Salinas, Ecuador: IEEE Press, 2017: 1-6. [12] Atzori M, Cognolato M, Müller H. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands[J]. Frontiers in Neurorobotics, 2016, 10: 9. [13] Colli-Alfaro JG, Ibrahim A, Trejos AL. Design of user-independent hand gesture recognition using multilayer perceptron networks and sensor fusion techniques[C]// 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). Toronto, ON, Canada: IEEE Press, 2019: 1103-1108. [14] Du Y, Jin W, Wei W, et al. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation[J]. Sensors, 2017, 17(3): 458. [15] Kim M, Chung WK, Kim K. Subject-independent sEMG pattern recognition by using a muscle source activation model[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5175-5180.
|