[1] Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association[J]. Circulation, 2020, 141(9): e139-e596. [2] Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy[J]. Circulation, 2000, 101(25): 2981-2988. [3] Anderson JL, Morrow DA. Acute myocardial infarction[J]. The New England Journal of Medicine, 2017, 376(21): 2053-2064. [4] Yu H, Lu K, Zhu J, et al. Stem cell therapy for ischemic heart diseases[J]. British Medical Bulletin, 2017,121(1): 135-154. [5] Laflamme MA, Murry CE. Heart regeneration[J]. Nature, 2011, 473(7347): 326-335. [6] Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics[J]. Nature Reviews Drug Discovery, 2017, 16(10): 699-717. [7] Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications[J]. Circulation Research, 2017, 120(12): 1958-1968. [8] Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges[J]. NPJ Regenerative Medicine, 2022, 7(1): 23. [9] Csobonyeiova M, Polak S, Nicodemou A, et al. iPSCs in modeling and therapy of osteoarthritis[J]. Biomedicines, 2021, 9(2): 186. [10] Nguyen R, Da Won Bae S, Qiao L, et al. Developing liver organoids from induced pluripotent stem cells (iPSCs): an alternative source of organoid generation for liver cancer research[J]. Cancer Letters, 2021, 508: 13-17. [11] Van Lent J, Verstraelen P, Asselbergh B, et al. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction[J]. Brain, 2021, 144(8): 2471-2485. [12] Kerr CM, Richards D, Menick DR, et al. Multicellular human cardiac organoids transcriptomically model distinct tissue-level features of adult myocardium[J]. International Journal of Molecular Sciences, 2021, 22(16): 8482. [13] Anderson ME, Goldhaber J, Houser SR, et al. Embryonic stem cell–derived cardiac myocytes are not ready for human trials[J]. Circulation Research, 2014, 115(3): 335-338. [14] Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts[J]. Nature, 2014,510(7504): 273-277. [15] Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nature Methods, 2014, 11(8): 855-860. [16] Tan X, Dai Q, Guo T, et al. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes[J]. Biochemical and Biophysical Research Communications, 2018, 495(4): 2490-2497. [17] Jiang Y, Li X, Guo T, et al. Ranolazine rescues the heart failure phenotype of PLN-deficient human pluripotent stem cell-derived cardiomyocytes[J]. Stem Cell Reports, 2022, 17(4): 804-819. [18] Cui Y, Hameed FM, Yang B, et al. Cyclic stretching of soft substrates induces spreading and growth[J]. Nature Communications, 2015, 6: 6333. [19] Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nature Methods, 2014, 11(8): 855-860. [20] Ruan J, Tulloch NL, Razumova MV, et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue[J]. Circulation, 2016, 134(20): 1557-1567. [21] Lu K, Seidel T, Cao-Ehlker X, et al. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium[J]. Theranostics, 2021, 11(13): 6138-6153. [22] Rachel K, Pathak S, Moorthi A, et al. 5-Azacytidine incorporated polycaprolactone-gelatin nanoscaffold as a potential material for cardiomyocyte differentiation[J]. Journal of Biomaterials Science Polymer Edition, 2020, 31(1): 123-140. [23] Rosenblatt-Velin N, Lepore MG, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes[J]. Journal of Clinical Investigation, 2005,115(7):1724-1733. [24] Ramesh S, Govarthanan K, Ostrovidov S, et al. Cardiac differentiation of mesenchymal stem cells: Impact of biological and chemical inducers[J]. Stem Cell Reviews and Reports, 2021, 17(4): 1343-1361. [25] Saotome K, Murthy SE, Kefauver JM, et al. Structure of the mechanically activated ion channel Piezo1[J]. Nature, 2018,554(7693):481-486. [26] Zhou T, Gao B, Fan Y, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-catenin[J]. eLife, 2020, 9: e52779. [27] He L, Si G, Huang J, et al. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel[J]. Nature, 2018, 555(7694): 103-106. [28] Jiang F, Yin K, Wu K, et al. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction[J]. Nature Communications, 2021,12: 869.
|