[1] 李丽琴. 基于人工智能的慢性肾病分级预警模型[J]. 时代报告(下半月), 2012(5): 330-331. [2] 徐静. 径向基函数神经网络评估慢性肾脏病肾小球滤过率[D]. 大连: 大连医科大学, 2016. Xu J. Evaluate glomerular filtration rate by the radial basis function neural network in patients with chronic kidney disease [D]. Dalian: Dalian Medical University, 2016. [3] Zahran A, EI-Husseini A, Shoker A. Can cystatin C replace creatinine to estimate glomerular filtration rate? A literature review[J]. American Journal of Nephrology, 2007, 27(2): 197-205. [4] Filler G, B?Kenkamp A, Hofmann W, et al. Cystatin C as a marker of GFR--history, indications, and future research[J]. Clinical Biochemistry, 2005, 38(1): 1-8. [5] 陈有维, 万福俊, 何乐愚, 等. ?BP 神 经 网 络 用 于 评 估 肾 小 球 滤 过 率的研究[J]. 临床医学, 2008, 28(5): 107-109, 128.? Chen YW, Wan FJ, He LY, et al. Study of BP neural network in predicting renal glomerular filtration rate[J].Clinical Medicine, 2008, 28(5): 107-109, 128. [6] 张雨浓,刘迅,何良宇,等. 应用WASD神经网络估算肾小球滤过率的研究[J]. 中国科技信息,2014(8): 212-216. Zhang YN, Liu X, He LY, et al. Research on application of WASD neural network to estimating glomerular filtration rate[J]. China Science and Technology Information,2014(8): 212-216.? [7] 张雨浓,何良宇,刘迅,等. 应用RBF激励WASD神经网络估算GFR[J]. 计算技术与自动化,2016, 35(1): 22-26. Zhang YN, He LY, Liu X, et al. Application of RBF-activated ?WASD neuronet in estimating GFR[J]. Computing ? Technology and Automation, 2016, 35(1): 22-26. [8] 邹海英,李智,杨帆. 基于特征选择的自适应模糊神经网络在肾小球滤过率中的应用[J]. 软件导刊,2018, 17(6): 153-156. [9] 李宁山,刘迅,吴效明,等. 人工神经网络在肾小球滤过率估算中的应用[J]. 第三军医大学学报,2012, 34(5): 409-411. Li NS, Liu X, Wu XM, et al. Estimating glomerular ?filtration ?rate with artificial neural network: a model establishment[J]. Acta Academiae Medicinae Militaris Tertiae, 2012, 34(5): 409-411. [10] Li NS, Huang H, Qian HZ, et al. Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation[J]. ?Journal of Translational Medicine, 2020, 18: 120. [11] Liu X, Pei XH, Li NS, et al. Improved glomerular filtration rate estimation by an artificial neural network[J]. PLoS One, 2013, 8(3): e58242. [12] Liu X, Chen YR, Li NS, et al. Estimation of glomerular filtration rate by a radial basis function neural network in patients with type-2 diabetes mellitus[J]. BMC Neuphrology, 2013, 14: 181. [13] Xu J, Guo BY, Liu CY. Evaluation of glomerular filtration rate in chronic kidney disease by radial basis function neural network[J]. Transplantation Proceedings, 2020, 52(3) : 748-753. [14] 梁哲.改进的RBF神经网络在肾小球滤过率估算中的应用[D]. 大连: 大连理工大学, 2016. Liang Z. Application of improved RBF neural networks on glomerular filtration rate estimation[D]. Dalian: Dalian University of Technology, 2016. [15] 杨万元,王胜男,赵卫红,等. 肾小球滤过率估算模型研究[J].生物医学工程学杂志, 2013, 30(5): 963-967.? Yang WY, Wang SN, Zhao WH, et al. Research of the glomerular ?filtration ?rate ?estimation ?model[J]. Journal of Biomedical Engineering, 2013, 30(5): 963-967. [16] 高峰,吴晓东,周科平. 基于主成分分析和PSO-ELM算法的排土场稳定性预测模型[J]. 黄金科学技术,2021, 29(5): 658-668. Gao F, Wu XD, Zhou KP. Prediction model of soil dump stability based on principal component analysis and PSO-ELM algorithm[J]. Gold Science and Technology, 2021, 29(5): 658-668. [17] 敬微微,韩倩,吴昊,等. 主成分分析和反向传播神经网络模型在血液透析机预防维护中的应用[J]. 中国医学装备, 2020, 17(7): 137-140. Jing WW, Han Q, Wu H, et al. Application of PCA and BP neural network model in the preventive maintenance of hemodialysis machine[J]. China Medical Equipment, 2020, 17(7): 137-140. [18] 吴定安,钟建伟,王新磊,等. 主成分分析和长短期记忆网络的电力负荷预测[J]. 物联网技术, 2021, 11(8): 47-51. [19] 刘斌,李立欣,李静. 一种改进的基于深度前馈神经网络的极化码BP译码算法[J]. 移动通信,2019, 43(4): 8-14. Liu B, Li LX, Li J. An improved polar BP decoding algorithm based on deep feedforward neural network[J]. Mobile Communications, 2019, 43(4): 8-14. [20] 杜方洲. 基于深度前馈神经网络的TRMM降水产品降尺度研究[D]. 南京: 南京信息工程大学,2020. Du FZ. Downscaling of TRMM precipitation products based on deep feedforward neural network[D]. ?Nanjing: Nanjing University of Information Science and Technology, 2020. [21] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine[J]. Nephron, 1976, 16(1): 31-41
|