设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于光电容积脉搏波的无袖带血压测量技术研究进展

Research progress of cuffless blood pressure measurement technology based on photoplethysmography

作者: 麻琛彬  张鹏  宋凡  孙洋洋  张光磊 
单位:北京航空航天大学生物与医学工程学院生物医学工程高精尖创新中心(北京 100191)<br />北京航空航天大学未来空天技术学院/高等理工学院(北京 100191)<br />通信作者:张光磊。E-mail: guangleizhang@buaa.edu.cn
关键词: 光电容积脉搏波;无袖带血压;信号处理;机器学习;序列学习 
分类号:R318.04
出版年·卷·期(页码):2023·42·2(194-203)
摘要:

无袖带血压监测技术由于低生理/心理负荷等特点,在健康监测领域具有广阔的应用前景。其中,基于光电容积脉搏波的无袖带血压测量技术能够获取连续动态的血压参数,有效弥补传统袖带血压测量不便、间断测量等不足。本文对基于光电容积脉搏波的无袖带血压测量技术的研究进展进行综述。首先从传感测量和数据处理方面介绍了光电容积脉搏波信号的获取与分析方法。然后简述了传统的基于脉搏波速度理论进行血压测量的研究,重点分析了该领域的主要研究方向:基于形态学参数的机器学习方法研究以及基于序列学习的深度网络研究。最后对基于光电容积脉搏波的无袖带血压测量技术所面临的挑战及其应对策略进行了深入分析和详细讨论,以期为该领域的相关研究提供参考。

Cuffless blood pressure monitoring technology has a broad application prospect in health monitoring due to its low physiological/psychological load and other characteristics. The photoplethysmography-based cuffless blood pressure measurement technology can obtain continuous dynamic blood pressure parameters and effectively compensate for the inconvenience and intermittent measurement of traditional cuffless blood pressure measurement. This paper reviews the research progress of the photoplethysmography-based cuffless blood pressure measurement technology. Firstly, acquiring and analyzing the photoplethysmography signal is introduced in terms of sensing measurement and data processing. Then the traditional research on blood pressure measurement based on pulse wave velocity theory is briefly described. The main research directions in this field are highlighted: research on machine learning methods based on morphological parameters and research on deep networks based on sequence learning. Finally, in-depth analysis and detailed discussion of the challenges faced by the photoplethysmography-based cuffless blood pressure measurement technology and its response strategies are presented to reference for related research in this field.

参考文献:

[1] Stevens SL, Wood S, Koshiaris C, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis[J]. BMJ, 2016, 354: i4098.
[2] Blanco PJ, Feijóo RA. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications[J]. Medical Engineering & Physics, 2013, 35(5): 652-667.
[3] Saugel B, Hoppe P, Nicklas JY, et al. Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: a systematic review and meta-analysis[J]. British Journal of Anaesthesia, 2020, 125(1): 25-37.
[4] Nachman D, Gepner Y, Goldstein N, et al. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device[J]. Scientific Reports, 2020, 10(1): 16116.
[5] Song K, Chung K, Chang J. Cuffless deep learning-based blood pressure estimation for smart wristwatches[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4292-4302.
[6] Li YH, Harfiya LN, Purwandari K, et al. Real-time cuffless continuous blood pressure estimation using deep learning model[J]. Sensors, 2020, 20(19): 5606.
[7] Hsu YC, Li YH, Chang CC, et al. Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only[J]. Sensors, 2020, 20(19): 5668.
[8] EI-Hajj C, Kyriacou PA. Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism[J]. Biomedical Signal Processing and Control, 2021, 65: 102301.
[9] Lee D, Kwon H, Son D, et al. Beat-to-beat continuous blood pressure estimation using bidirectional long short-term memory network[J]. Sensors, 2021, 21(1): 96.
[10] Eom H, Lee D, Han S, et al. End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism[J]. Sensors, 2020, 20(8): 2338.
[11] Panwar M, Gautam A, Biswas D, et al. PP-Net: a deep learning framework for PPG-based blood pressure and heart rate estimation[J]. IEEE Sensors Journal, 2020, 20(17): 10000-10011.
[12] Athaya T, Choi S. An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: a U-Net architecture-based approach[J]. Sensors, 2021, 21(5): 1867.
[13] Aguirre N, Grall-Ma?s E, Cymberknop LJ, et al. Blood pressure morphology assessment from photoplethysmogram and demographic information using deep learning with attention mechanism[J]. Sensors, 2021, 21(6): 2167.
[14] Westenberg JJM, van Poelgeest EP, Steendijk P, et al. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment[J]. Journal of Cardiovascular Magnetic Resonance, 2012, 14: 2.
[15] Suzuki S, Oguri K. Cuffless blood pressure estimation by error-correcting output coding method based on an aggregation of AdaBoost with a photoplethysmograph sensor[J]. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009: 6765-6768.
[16] Kurylyak Y, Lamonaca F, Grimaldi D. A neural network-based method for continuous blood pressure estimation from a PPG signal[C]// 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Minneapolis, MN, USA: IEEE, 2013: 280-283.
[17] Duan K, Qian Z, Atef M, et al. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 6385-6388.
[18] Kachuee M, Kiani MM, Mohammadzade H, et al. Cuffless blood pressure estimation algorithms for continuous health-care monitoring[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(4): 859-869.
[19] Miao F, Fu N, Zhang Y, et al. A novel continuous blood pressure estimation approach based on data mining techniques[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6): 1730-1740.
[20] Khalid SG, Zhang J, Chen F, et al. Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches[J]. Journal of Healthcare Engineering, 2018, 2018: 1548647.
[21] Priyanka KNG, Chao PC, Tu T, et al. Estimating blood pressure via artificial neural networks based on measured photoplethysmography waveforms[C]// 2018 IEEE Sensors. New Delhi, India: IEEE, 2018: 1-4.
[22] Wang L, Zhou W, Xing Y, et al. A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram[J]. Journal of Healthcare Engineering, 2018, 2018: 7804243.
[23] Mousavi SS, Firouzmand M, Charmi M, et al. Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method[J]. Biomedical Signal Processing and Control, 2019, 47: 196-206.
[24] Khalid SG, Liu H, Zia T, et al. Cuffless blood pressure estimation using single channel photoplethysmography: a two-step method[J]. IEEE Access, 2020, 8: 58146-58154.
[25] Zhang Y, Feng Z. A SVM method for continuous blood pressure estimation from a PPG signal[C]// Proceedings of the 9th International Conference on Machine Learning and Computing. Raleigh, North Carolina, USA: EDM 2016, 2017: 128–132.
[26] Liu M, Po LM, Fu H. Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative[J]. International Journal of Computer Theory and Engineering, 2017, 9(3): 202-206.
[27] Su P, Ding X, Zhang Y, et al. Long-term blood pressure prediction with deep recurrent neural networks[C]// 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). ?Las Vegas, NV, USA: IEEE, 2018: 323-328.
[28] Lin W-H, Wang H, Samuel OW, et al. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy[J]. Physiological Measurement, 2018, 39(2): 025005.
[29] Slapni?ar G, Lu?trek M, Marinko M. Continuous blood pressure estimation from PPG signal[J]. Informatica, 2018, 42(1): 33-42.
[30] Ertu?rul ?F, Sezgin N. A noninvasive time-frequency-based approach to estimate cuffless arterial blood pressure[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26(5): 2260-2274.
[31] Chowdhury MH, Shuzan MN, Chowdhury MEH, et al. Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques[J]. Sensors, 2020, 20(11): 3127.
[32] Saeed M, Villarroel M, Reisner AT, et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database[J]. Critical Care Medicine, 2011, 39(5): 952-960.
[33] Liu D, G?rges M, Jenkins SA. University of Queensland vital signs dataset: development of an accessible repository of anesthesia patient monitoring data for research[J]. Anesthesia and Analgesia, 2012, 114(3): 584-589.
[34] White WB, Berson AS, Robbins C, et al. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers[J]. Hypertension, 1993, 21(4): 504-509.
[35] Shimazaki S, Kawanaka H, Ishikawa H, et al. Cuffless blood pressure estimation from only the waveform of photoplethysmography using CNN[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 5042-5045.
[36] Slapni?ar G, Mlakar N, Lu?trek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network[J]. Sensors, 2019, 19(15): 3420.
[37] Yan C, Li Z, Zhao W, et al. Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 1917-1920.
[38] Baek S, Jang J, Yoon S. End-to-end blood pressure prediction via fully convolutional networks[J]. IEEE Access, 2019, 7: 185458-185468.
[39] Shimazaki S, Bhuiyan S, Kawanaka H, et al. Features Extraction for Cuffless Blood Pressure Estimation by Autoencoder from Photoplethysmography[C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). ?Honolulu, HI, USA: IEEE Press, 2018: 2857-2860.
[40] Landry C, Peterson SD, Arami A. Nonlinear Dynamic Modeling of Blood Pressure Waveform: Towards an Accurate Cuffless Monitoring System[J]. IEEE Sensors Journal, 2020, 20(10): 5368-5378.
[41] Tanveer MS, Hasan MK. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network[J]. Biomedical Signal Processing and Control, 2019, 51: 382-392.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com