设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
心脏瓣膜生物力学及相关建模方式的研究进展

Research progress of heart valve biomechanics and related modeling methods

作者: 孟丑拴  洪洋  姜华  张宾 
单位:河北北方学院附属第一医院(河北张家口 075000)<br />通信作者:张宾。E-mail:13731312273@163.com
关键词: 心脏瓣膜;生物力学;细胞外基质;心脏瓣膜性疾病;建模方式 
分类号:R318.01
出版年·卷·期(页码):2023·42·2(212-216)
摘要:

心脏瓣膜生物力学是一个快速发展的、高度临床相关的研究领域。研究表明大多数瓣膜病变是由于瓣膜生物力学改变导致的,因此了解心脏瓣膜与其局部力学环境之间的相互作用对于了解正常瓣膜功能和阐明瓣膜疾病进展至关重要。然而研究这些病变的技术在很大程度上受到了限制,其中缺乏良好的瓣膜力学相互作用模型是限制该领域研究深入开展的主要瓶颈之一。随着数值计算模型、体外模型和动物模型建模技术的飞速发展,心脏瓣膜相关的生物力学和介入治疗研究取得了重大进展。本文对心脏瓣膜的生物学和生物力学及相关模型进行综述,旨在使用跨学科方法加强临床心血管医生对心脏瓣膜疾病的理解。

Heart valve biomechanics is a rapidly developing and highly clinically relevant field of research. Studies have shown that most valve disease is due to altered valve biomechanics, and understanding the interaction between the heart valve and its local mechanical environment is critical for understanding normal valve function and elucidating disease progression. However, the techniques for studying these lesions are largely limited, and the lack of good valve mechanical interaction models is one of the main bottlenecks restricting the in-depth research in this field. With the rapid development of numerical calculation model, in vitro model and animal model modeling technology, significant progress has been made in biomechanics and interventional therapy research related to heart valves. This article reviews the biology and biomechanics of heart valves and related models with the aim of enhancing clinical cardiologists' understanding of heart valve disease using an interdisciplinary approach.

参考文献:

[1]马娜,曾培,荆腾,等.心脏瓣膜双轴力学特性测试系统的设计[J].北京生物医学工程, 2018, 37(1): 79-85.
Ma N, Zeng P, Jing T, et al. Design of mechanical properties test system for the heart valve biaxial[J]. Beijing Biomedical Engineering, 2018, 37(1): 79-85.
[2]刘丽,万辰杰,柯林楠,等. 经导管瓣膜瓣中瓣模式下流体力学性能体外测试及评价[J]. 北京生物医学工程,2021,40(4): 393-399.?
Liu L, Wan CJ, Ke LN, et al. Hydrodynamic performance testing and evaluation of the transcatheter heart valve in valve-in-valve model[J]. Beijing Biomedical Engineering, 2021,40(4): 393-399.
[3]Hinton RB Jr, Lincoln J, Deutsch GH, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves[J]. Circulation Research, 2006,98(11): 1431-1438.
[4]Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective[J]. Cardiovascular Pathology, 2016, 25(4): 341-352.
[5]Hinton RB, Yutzey KE. Heart valve structure and function in development and disease[J]. Annual Review of Physiology, 2011, 73: 29-46.
[6]Horne TE, VandeKopple M, Sauls K, et al. Dynamic heterogeneity of the heart valve interstitial cell population in mitral valve health and disease[J]. Journal of Cardiovascular Development and Disease, 2015, 2(3): 214-232.
[7]Anstine LJ, Bobba C, Ghadiali S, et al. Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation[J]. Journal of Molecular And Cellular Cardiology, 2016,100: 72-82.
[8]Dutta P, Lincoln J. Calcific aortic valve disease: a developmental biology perspective[J]. Current Cardiology Reports, 2018, 20: 21.
[9]Aggarwal A, Pouch AM, Lai E, et al. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets[J]. Journal of Biomechanics, 2016, 49(12): 2481-2490.
[10]Blum KM, Drews JD, Breuer CK. Tissue-engineered heart valves: a call for mechanistic studies[J]. Tissue Engineering Part B: Reviews, 2018, 24(3): 240-253.?
[11]Zhang BL, Bianco RW, Schoen FJ. Preclinical assessment of cardiac valve substitutes: Current status and considerations for engineered tissue heart valves[J]. Frontiers in Cardiovascular Medicine, 2019, 6: 72.
[12]Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 63.
[13]Fioretta ES, von Boehmer L, Motta SE, et al. Cardiovascular tissue engineering: from basic science to clinical application[J]. Experimental Gerontology, 2019, 117: 1-12.
[14]Del Alamo JC, Marsden AL, Lasheras JC. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease[J]. Revista Espanola de Cardiologia, 2009, 62(7): 781-805.
[15]Caballero A, Mao W, McKay R, et al. New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling[J]. Scientific Reports, 2018, 8(1): 17306.
[16]Sacks M, Drach A, Lee CH,et al. On the simulation of mitral valve function in health, disease, and treatment[J]. Journal of Biomechanical Engineering, 2019, 141(7): 0708041–07080422.
[17]Siefert AW, Rabbah JP, Saikrishnan N, et al. Isolated effect of geometry on mitral valve function for in silico model development[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(6): 618-627.
[18]Meijerink F, Wijdh-den Hamer IJ, Bouma W, et al. Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation[J]. Journal of Cardiothoracic Surgery, 2020,15(1): 161.
[19]Toma M, Einstein DR, Kohli K, et al. Effect of edge-to-edge mitral valve repair on chordal strain: Fluid-structure interaction simulations[J]. Biology (Basel), 2020, 9(7): 173.
[20]Midha PA, Raghav V, Sharma R, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus[J]. Circulation, 2017, 136(17): 1598-1609.
[21]Becsek B, Pietrasanta L, Obrist D. Turbulent systolic flow downstream of a bioprosthetic aortic valve: velocity spectra, wall shear stresses, and turbulent dissipation rates[J]. Frontiers in Physiology, 2020, 11: 577188.
[22]Noble C, Choe J, Uthamaraj S, et al. In silico performance of a recellularized tissue-engineered transcatheter aortic valve[J]. Journal of Biomechanical Engineering, 2019, 141(6): 61004-6100412.
[23]Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement[J]. Journal of Cardiovascular Computed Tomography, 2016, 10(1): 28-36.
[24]Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models[J]. iScience, 2021, 24(5): 102443.
[25]Amini Khoiy K, Asgarian KT, Loth F, et al. Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts[J]. PLoS One, 2018, 13(11): e0206744.
[26]Midha PA, Raghav V, Condado JF, et al. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model[J]. JACC: Cardiovascular Interventions, 2016, 9(15): 1618-1628.
[27]Trusty PM, Bhat SS, Sadri V, et al. The role of flow stasis in transcatheter aortic valve leaflet thrombosis[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): e105-e117.
[28]Sadri V, Madukauwa-David ID, Yoganathan AP. In vitro evaluation of a new aortic valved conduit[J]. The Journal of Thoracic and Cardiovascular Surgery, 2021, 161(2): 581-590.e6.
[29]Okafor I, Raghav V, Condado JF, et al. Aortic regurgitation generates a kinematic obstruction which hinders left ventricular filling[J]. Annals of Biomedical Engineering, 2017, 45(5): 1305-1314.
[30]Paulsen MJ, Imbrie-Moore AM, Wang H, et al. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator[J]. European Journal of Cardio-thoracic Surgery, 2020, 57(3): 535-544.
[31]Imbrie-Moore AM, Zhu Y, Park MH, et al. Artificial papillary muscle device for off-pump transapical mitral valve repair[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(4): e133-e141.?
[32]Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling : perspectives, challenges, and opportunities[J]. Biomechnics and Modeling in Mechanobiology, 2021, 20(3): 803-831.
[33]Onohara D, Corporan D, Hernandez-Merlo R, et al. Mitral regurgitation worsens cardiac remodeling in ischemic cardiomyopathy in an experimental model[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 160(3): e107-e125.
[34]Xu D, McBride E, Kalra K, et al. Undersizing mitral annuloplasty alters left ventricular mechanics in a swine model of ischemic mitral regurgitation[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): 850-861.e8.?
[35]Pierce EL, Bloodworth CH 4th, Imai A, et al. Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces[J]. Journal of Biomechanics, 2018, 75: 58-66.
[36]Ncho BE, Pierce EL, Bloodworth CH 4th, et al. Optimized mitral annuloplasty ring design reduces loading in the posterior annulus[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 159(5): 1766-1774.e2.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com