[1]马娜,曾培,荆腾,等.心脏瓣膜双轴力学特性测试系统的设计[J].北京生物医学工程, 2018, 37(1): 79-85. Ma N, Zeng P, Jing T, et al. Design of mechanical properties test system for the heart valve biaxial[J]. Beijing Biomedical Engineering, 2018, 37(1): 79-85. [2]刘丽,万辰杰,柯林楠,等. 经导管瓣膜瓣中瓣模式下流体力学性能体外测试及评价[J]. 北京生物医学工程,2021,40(4): 393-399.? Liu L, Wan CJ, Ke LN, et al. Hydrodynamic performance testing and evaluation of the transcatheter heart valve in valve-in-valve model[J]. Beijing Biomedical Engineering, 2021,40(4): 393-399. [3]Hinton RB Jr, Lincoln J, Deutsch GH, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves[J]. Circulation Research, 2006,98(11): 1431-1438. [4]Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective[J]. Cardiovascular Pathology, 2016, 25(4): 341-352. [5]Hinton RB, Yutzey KE. Heart valve structure and function in development and disease[J]. Annual Review of Physiology, 2011, 73: 29-46. [6]Horne TE, VandeKopple M, Sauls K, et al. Dynamic heterogeneity of the heart valve interstitial cell population in mitral valve health and disease[J]. Journal of Cardiovascular Development and Disease, 2015, 2(3): 214-232. [7]Anstine LJ, Bobba C, Ghadiali S, et al. Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation[J]. Journal of Molecular And Cellular Cardiology, 2016,100: 72-82. [8]Dutta P, Lincoln J. Calcific aortic valve disease: a developmental biology perspective[J]. Current Cardiology Reports, 2018, 20: 21. [9]Aggarwal A, Pouch AM, Lai E, et al. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets[J]. Journal of Biomechanics, 2016, 49(12): 2481-2490. [10]Blum KM, Drews JD, Breuer CK. Tissue-engineered heart valves: a call for mechanistic studies[J]. Tissue Engineering Part B: Reviews, 2018, 24(3): 240-253.? [11]Zhang BL, Bianco RW, Schoen FJ. Preclinical assessment of cardiac valve substitutes: Current status and considerations for engineered tissue heart valves[J]. Frontiers in Cardiovascular Medicine, 2019, 6: 72. [12]Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 63. [13]Fioretta ES, von Boehmer L, Motta SE, et al. Cardiovascular tissue engineering: from basic science to clinical application[J]. Experimental Gerontology, 2019, 117: 1-12. [14]Del Alamo JC, Marsden AL, Lasheras JC. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease[J]. Revista Espanola de Cardiologia, 2009, 62(7): 781-805. [15]Caballero A, Mao W, McKay R, et al. New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling[J]. Scientific Reports, 2018, 8(1): 17306. [16]Sacks M, Drach A, Lee CH,et al. On the simulation of mitral valve function in health, disease, and treatment[J]. Journal of Biomechanical Engineering, 2019, 141(7): 0708041–07080422. [17]Siefert AW, Rabbah JP, Saikrishnan N, et al. Isolated effect of geometry on mitral valve function for in silico model development[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(6): 618-627. [18]Meijerink F, Wijdh-den Hamer IJ, Bouma W, et al. Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation[J]. Journal of Cardiothoracic Surgery, 2020,15(1): 161. [19]Toma M, Einstein DR, Kohli K, et al. Effect of edge-to-edge mitral valve repair on chordal strain: Fluid-structure interaction simulations[J]. Biology (Basel), 2020, 9(7): 173. [20]Midha PA, Raghav V, Sharma R, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus[J]. Circulation, 2017, 136(17): 1598-1609. [21]Becsek B, Pietrasanta L, Obrist D. Turbulent systolic flow downstream of a bioprosthetic aortic valve: velocity spectra, wall shear stresses, and turbulent dissipation rates[J]. Frontiers in Physiology, 2020, 11: 577188. [22]Noble C, Choe J, Uthamaraj S, et al. In silico performance of a recellularized tissue-engineered transcatheter aortic valve[J]. Journal of Biomechanical Engineering, 2019, 141(6): 61004-6100412. [23]Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement[J]. Journal of Cardiovascular Computed Tomography, 2016, 10(1): 28-36. [24]Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models[J]. iScience, 2021, 24(5): 102443. [25]Amini Khoiy K, Asgarian KT, Loth F, et al. Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts[J]. PLoS One, 2018, 13(11): e0206744. [26]Midha PA, Raghav V, Condado JF, et al. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model[J]. JACC: Cardiovascular Interventions, 2016, 9(15): 1618-1628. [27]Trusty PM, Bhat SS, Sadri V, et al. The role of flow stasis in transcatheter aortic valve leaflet thrombosis[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): e105-e117. [28]Sadri V, Madukauwa-David ID, Yoganathan AP. In vitro evaluation of a new aortic valved conduit[J]. The Journal of Thoracic and Cardiovascular Surgery, 2021, 161(2): 581-590.e6. [29]Okafor I, Raghav V, Condado JF, et al. Aortic regurgitation generates a kinematic obstruction which hinders left ventricular filling[J]. Annals of Biomedical Engineering, 2017, 45(5): 1305-1314. [30]Paulsen MJ, Imbrie-Moore AM, Wang H, et al. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator[J]. European Journal of Cardio-thoracic Surgery, 2020, 57(3): 535-544. [31]Imbrie-Moore AM, Zhu Y, Park MH, et al. Artificial papillary muscle device for off-pump transapical mitral valve repair[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(4): e133-e141.? [32]Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling : perspectives, challenges, and opportunities[J]. Biomechnics and Modeling in Mechanobiology, 2021, 20(3): 803-831. [33]Onohara D, Corporan D, Hernandez-Merlo R, et al. Mitral regurgitation worsens cardiac remodeling in ischemic cardiomyopathy in an experimental model[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 160(3): e107-e125. [34]Xu D, McBride E, Kalra K, et al. Undersizing mitral annuloplasty alters left ventricular mechanics in a swine model of ischemic mitral regurgitation[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): 850-861.e8.? [35]Pierce EL, Bloodworth CH 4th, Imai A, et al. Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces[J]. Journal of Biomechanics, 2018, 75: 58-66. [36]Ncho BE, Pierce EL, Bloodworth CH 4th, et al. Optimized mitral annuloplasty ring design reduces loading in the posterior annulus[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 159(5): 1766-1774.e2.
|