设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于残差注意力神经网络模型的癫痫脑电信号分类

作者: 刘敏,张魁星,李丽萍,徐娟娟,李翔,魏本征 
单位:1.山东中医药大学智能与信息工程学院2.山东大学附属山东省千佛山医院睡眠医学中心3.山东中医药大学医学人工智能研究中心4.山东中医药大学青岛中医药科学院山
关键词: 癫痫; 脑电信号; 时频分析; RAM-Net; 注意力机制; 残差网络; 
分类号:
出版年·卷·期(页码):2023·42·3(263-270)
摘要:

目的 针对癫痫脑电信号特征提取过程复杂、信息提取不充分及分类精度较低等问题,本文提出一种基于残差注意力神经网络模型(residual attention module neural network,RAM-Net)用于实现癫痫脑电信号的自动分类。方法 首先对脑电信号进行去噪和分段处理,使网络更有效提取细节特征;然后根据脑电信号在时频域幅值特点,将信号转换为二维时频图像作为模型输入;最后借鉴残差网络思想,在每个残差块中融合注意力机制,构建分类模型,在临床数据集上做验证。结果 该方法分类准确率为97.16%,精确率为97.00%,可实现癫痫发作、间期和正常状态的脑电信号三分类。结论 基于RAMNet的癫痫脑电信号分类方法将脑电信号转化为二维图像,降低了方法复杂度;融合注意力机制增强了网络的有效信息提取能力,可为癫痫临床辅助诊断提供一种新的分析思路和处理方法。

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com