目的 为医生介入手术训练时提供更加直观的位置参考信息,设计了一种快速检测导丝位置的方法。方法 以YOLO算法为基本框架,将视频帧中的导丝头端建模为单一检测目标,通过优化网格划分尺度来实现准确的导丝实时检测。本研究基于体外介入模拟操作平台共采集50个视频序列,从40个视频中随机收集8 000张独立帧作为训练样本,基于10个完整视频序列收集的1 960张独立帧进行算法测试,以预测框与真实框交并比为检测精度评价指标,并进一步分析非YOLO和YOLO方法在4个不同主动脉解剖区域的检测鲁棒性。结果 在12×20网格尺度和交并比大于0.5为预测准确的条件下,YOLO算法的导丝检测的准确率达到了0.995 4,检测帧率为333 fps。由于血管遮挡的干扰,非YOLO和YOLO方法在腹主动脉区域检测精度有所下降,但基于YOLO的检测方法能够有效降低血管遮挡的影响。结论 基于YOLO算法能够实现更加精准的导丝检测,且在不同主动脉区域均表现出具有良好的鲁棒性,能够为医生介入手术训练过程提供实时有效的视觉辅助。
|