设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于改进人工蜂群算法优化支持向量机的睡眠呼吸暂停检测方法

作者: 熊馨,冯建楠,吴迪,张亚茹,易三莉,王春武,刘瑞湘,贺建峰 
单位:1.昆明理工大学信息工程与自动化学院2.韩山师范学院物理与电子工程学院3.云南省第二人民医院临床心理科
关键词: 呼吸暂停; 交叉变异; 混沌; 人工蜂群; 支持向量机; 分类检测; 
分类号:
出版年·卷·期(页码):2023·42·4(370-376)
摘要:

目的 睡眠呼吸暂停综合征(sleep apnea syndrome, SAS)是由于睡眠时上气道通气不畅或堵塞引起的呼吸暂停或低通气,严重影响人类健康和生活。目前的检测方法是多导睡眠仪,检测过程较为复杂,影响患者正常睡眠。为此本文提出了一种针对血氧饱和度信号的引入交叉变异的全局混沌人工蜂群(cross global chaos artificial bee colony, CGCABC)算法优化支持向量机(support vector machine, SVM)的SAS检测方法。方法 从数据集ISRUC-SLEEP中提取25名SAS患者整晚8 h的脉搏血氧饱和度数据,经预处理后对每段数据计算5种非线性特征,包括近似熵、模糊熵、信息熵、排列熵和样本熵。比较发病片段信号特征和未发病片段信号特征之间的差异,使用CGCABC算法优化的SVM模型进行分类检测,并与人工蜂群(artificial bee colony, ABC)算法、粒子群(particle swarm optimization, PSO)算法、麻雀搜索(sparrow search, SS)算法优化SVM模型的检测结果进行对比。结果 使用CGCABC算法优化的SVM模型在准确率、特异度、敏感度以及收敛时间上均有较好的效果,优于ABC算法、PSO算法和SS算法优化SVM模型的检测。结论 本文提出的方法对SAS这一疾病的识别和检测具有重要价值,在医疗领域上具有广泛的应用前景。

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com