随着人机交互技术的不断进步和广泛应用,对用户情绪的准确识别变得日益重要。情绪识别技术已经在多个领域展现出巨大潜力,包括医疗诊断、交通安全和教育等方面。而基于脑电的情绪识别成为了情绪识别领域中的热门研究方向。首先,本文介绍情绪连续和情绪离散模型的基本概念,总结常用的脑电公开数据集,并对数据集的规模、情绪标签以及它们对脑电情绪识别任务的影响进行了比较分析。其次,因为不同频带和脑电通道对于情绪识别的影响各不相同,课题组汇总脑电情绪识别关键频带和通道的相关研究,并从文献中总结归纳出脑电情绪识别的关键频带范围以及具有丰富情绪信息的脑电通道位置。接着,介绍四类脑电情绪特征且给出对应的特征提取方法,也指出各种脑电特征的提取难度和目前在情绪识别中的应用效果。然后,对基于深度学习的脑电情绪识别中的数据增强技术和注意力机制进行了阐述,指出数据增强技术的主流趋势和生成的人工情绪特征的类型,对各种注意力机制的作用方式和侧重点进行了对比分析。数据增强技术用来解决脑电数据量不足的问题,注意力机制则对情绪识别准确率的提高起到了关键作用。最后,对未来脑电情绪识别模型的通用性和脑电采集设备的研究方向做了一定的展望。
|