设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于偶极子成像和3D卷积神经网络的源域运动想象解码方法

作者: 李明爱;李翔宇; 
单位:1.北京工业大学信息科学技术学院2.计算智能与智能系统北京市重点实验室3.数字社区教育部工程研究中心
关键词: 运动想象;脑源成像;局部保持投影;卷积神经网络;Desikan-Killiany分区; 
分类号:
出版年·卷·期(页码):2024·43·5(441-450)
摘要:

目的 为充分保留和利用运动想象(motor imagery, MI)时偶极子的时空信息,本文提出一种新的偶极子成像(dipoles imaging, DI)结合3维卷积神经网络(3D convolutional neural network, 3DCNN)的源域MI解码方法(DI-3DCNN)。方法 首先,基于脑源成像(electroencephalography source imaging, ESI)技术计算运动想象脑电信号的偶极子源估计;接着,获取每类MI任务的平均偶极子源估计,基于数据驱动自动选择每类任务中偶极子激活水平较高且最大区分于其他任务的时刻作为中心采样点,再对中心采样点进行前后延伸并按任务顺序组合,形成感兴趣时间(time of interest, TOI);其次,选择覆盖高激活偶极子的Desikan-Killiany(DK)神经分区,并对局部保持投影方法(local preserving projection, LPP)增加DK分区约束,获得一种改进的有监督LPP(LPPDK);进而,基于LPPDK分别将所选择左、右半脑分区内的偶极子坐标从3维(three dimensional, 3D)降成2维,获得具有神经生理先验信息的偶极子2D坐标,再结合TOI内各采样点处偶极子的幅值信息进行成像,并进行插值、下采样操作,得到偶极子的2D幅值图;随后,将TOI内偶极子的2D幅值图按时间顺序堆叠,获得左、右半脑的3D偶极子特征图,并将其作为网络的输入数据;最后,根据输入数据的特点,设计一种双分支3D卷积神经网络(dual-branched 3DCNN,DB3DCNN)实现MI解码。结果 基于BCI competition IV 2a数据集进行实验研究,取得了86.50%的平均解码准确率。结论 基于DI所得3D偶极子特征图能够较好地保留偶极子的最佳激活时间、程度及生理空间信息,且与DB3DCNN性能匹配。

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com