设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于交叉双流特征融合配准网络对阿尔茨海默病中大脑皮质及皮下核团的图像分析

Image analysis of cortical and subcortical nuclei in Alzheimer disease based on intersected dual stream feature fusion registration network

作者: 李振宇,李恩慧,张童禹,张唯唯 
单位:中国医学科学院基础医学研究所,北京协和医学院基础学院(北京 100005)
关键词: MR脑图像;微分同胚配准;注意力机制;阿尔茨海默病;脑解剖结构 
分类号:
出版年·卷·期(页码):2025·44·1(16-25)
摘要:

目的 提出一种基于交叉双流的多尺度注意力特征融合网络并命名为MAFF-Net,用于脑图像微分同胚配准,以实现阿尔茨海默病相关的脑结构标签的快速提取和分析。方法 首先利用交叉双流网络推断图像对之间的相互映射关系,并通过引入注意力机制融合多尺度特征信息,然后利用微分同胚配准增强形变场的连续性和全局平滑性提高配准质量。最后,在自采集、OASIS-AD与OASIS-Health数据集上进行脑图像配准实验,采用Dice相似性系数(Dice similarity coefficients, DSC)、召回率(Recall)、平均表面距离(average surface distance, ASD),以及雅克比行列式 (Jacobian determinant)验证MAFF-Net模型的性能,并进一步分析OASIS数据集的脑结构标签提取结果。 结果 脑图像配准实验结果显示,MAFF-Net算法在三个测试集上DSC分别为0.832、0.853和0.865,负雅可比行列式体素比例分别为0.027%、0.192%和0.089%,Recall分别为0.924、0.909和0.920,ASD分别为0.447mm、0.387mm和0.345mm,除Recall外其余指标均优于对比算法。OASIS数据集的脑结构标签分析结果表明,大脑皮质、海马体和杏仁核的体积和表面积与年龄和健康状态存在密切联系。 结论 本文提出的MAFF-Net模型可以获得脑MR图像精确的配准性能和标签提取结果,通过AD相关的脑结构形态学特征分析,为AD早期诊断提供辅助参考价值。

Objective An attention-based multiscale feature fusion network with intersected dual stream was proposed, namely MAFF-Net, for diffeomorphic brain image registration, in order to achieve rapid extraction and analysis of Alzheimer's disease-related brain structure labels. Methods The intersected dual stream network was used to infer the mutual mapping relationship between image pairs, then the multiscale feature information was fused by introducing the attention mechanism, finally diffeomorphic registration was introduced to enhance the continuity and global smoothness of the deformation field and improve the registration quality. Brain image registration experiments were conducted on self-collected, OASIS-AD, and OASIS-Health datasets. The performance of the MAFF-Net model was validated using metrics by Dice similarity coefficient (DSC), recall, average surface distance (ASD), and the Jacobian determinant. Further analysis was performed on the brain structure label extraction results from the OASIS dataset. Results The experimental results of brain image registration show that the MAFF-Net algorithm has DSC values of 0.832, 0.853, and 0.865 on the three test sets, negative Jacobian determinant voxel ratios of 0.027%, 0.192%, and 0.089%, Recall values of 0.924, 0.909, and 0.920, ASD values of 0.447mm, 0.387mm, and 0.345mm, with all but Recall being superior to the comparison algorithm. The results of brain structural label analysis on the OASIS dataset show that the volume and surface area of the cerebral cortex, hippocampus, and amygdala are closely related to age and health status. Conclusion The MAFF-Net model proposed in this paper can obtain accurate registration performance and label extraction results of brain MR Images, and provide auxiliary reference value for the early diagnosis of AD through the analysis of morphological characteristics of AD related brain structures.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com