设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
面向BraTS数据集的脑肿瘤分割深度学习方法研究

Research on deep learning methods for brain tumor segmentation targeting the BraTS dataset

作者: 李学辉,魏国辉,贠恺,赵文华,马志庆 
单位:山东中医药大学智能与信息工程学院(济南 250355)
关键词: 脑肿瘤分割;深度学习;CNN;U-Net;Transformer 
分类号:
出版年·卷·期(页码):2025·44·1(96-103)
摘要:

脑肿瘤分割任务在医学图像分割领域备受关注,其复杂性和多样性迫切需要研究学者采用高效的深度学习技术进行精确处理。随着深度学习技术的快速发展,各种针对脑肿瘤数据集(如brain tumor segmentation challenge,BraTS)的深度学习模型层出不穷。本文综述了3种面向BraTS数据集的脑肿瘤分割深度学习方法的研究进展。首先,本文详细介绍了BraTS数据集的背景和来源,深入剖析该多模态数据集的结构组成和各项性能评价指标,为后续深度模型分析提供理论基础;其次,针对3种不同的深度学习模型在BraTS数据集上的性能表现进行详细探讨,包括卷积神经网络(convolutional neural network,CNN)、U型卷积网络(U-Net convolutional networks,U-Net)和Transformer等网络模型在脑肿瘤分割领域中对其基础模型做出的优化和改进,并对此类模型在面临数据集类不平衡问题和模型的建模、特征提取和特征融合等方面的挑战时所采取的策略进行深入分析;最后,本文总结了目前模型的研究趋势并对Transformer模型的未来方向进行展望,强调在模型性能提升的同时,自监督学习和轻量化的研究将会是未来研究的焦点。本文旨为初步涉足该领域的研究学者了解当前研究现状提供深入的理解和启发,为开发更高性能、更具泛化能力的脑肿瘤分割方法提供参考。

The brain tumor segmentation task has attracted considerable attention in the realm of medical image segmentation, necessitating scholars to employ efficient deep learning techniques for precise handling given its inherent complexity and diversity. With the rapid advancement of deep learning technologies, a plethora of models tailored for the brain tumor segmentation challenge (BraTS) dataset has emerged. This paper presents a comprehensive review of three deep learning approaches for brain tumor segmentation, focusing on the BraTS dataset. Firstly, the paper meticulously introduces the background and origin of the BraTS dataset, thoroughly dissecting the structural composition and various performance evaluation metrics of this multimodal dataset. This provides a theoretical foundation for subsequent in-depth analyses of deep models. Secondly, the paper conducts an in-depth discussion regarding the performance of three distinct deep learning models on the BraTS dataset. This includes convolutional neural network (CNN), U-Net convolutional networks (U-Net), and Transformer models, elucidating the optimizations and enhancements made to their foundational models in the domain of brain tumor segmentation. The paper further delves into the strategies employed by these models to address challenges such as dataset class imbalance and issues related to modeling, feature extraction, and feature fusion. Lastly, the paper summarizes the current trends in model research and forecasts the future direction of Transformer models, emphasizing that, in addition to improving model performance, future research will focus on self-supervised learning and lightweight methodologies. The paper aims to provide an in-depth understanding and inspiration for researchers who are initially exploring this field, offering valuable insights for the development of higher-performing and more generalizable methods for brain tumor segmentation.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com