Segmentation of brain MR images with inhomogeneity based on a modified fuzzy C-mean clustering algorithm
磁共振图像经常被含有缓慢变化的灰度不均匀场所破坏,不均匀场会造成同一组织的灰度发生变化,从而影响计算机辅助诊断的准确性.传统的基于灰度信息的分割方法对具有不均匀场的磁共振图像分割效果往往并不理想.文章改进了基于灰度信息的模糊C均值(FCM)算法,将偏移场模型、代表图像空间信息的邻域控制信息和最小二乘曲面拟合方法有机结合,能同时实现图像的校正和聚类,适用于灰度不均匀脑部磁共振图像的分割,分割精度明显优于已有的基于FCM的分割方法.