设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于支持向量机的乳腺癌预后状态预测和疗效评估

The prediction of prognosis and evaluation of curative effect for breast cancer based on support vector machine

作者: 袁前飞;蔡从中;肖汉光;刘兴华;孔春阳 
单位:重庆大学应用物理系,重庆,400044;新加坡国立大学制药系,新加坡,117543%重庆大学应用物理系,重庆,400044%重庆师范大学物理学与信息技术学院,重庆,400047
关键词: 支持向量机%乳腺癌%预后%评估 
分类号:
出版年·卷·期(页码):2007·26·4(372-376)
摘要:

乳腺癌是危害妇女健康的主要恶性肿瘤.目前基因与疾病关系的研究取得了一系列的成果,使得利用乳腺癌患者的基因信息来预测预后状态和评估治疗效果成为了可能.支持向量机(support vector machine,SVM)分类方法在实际二类分类问题的应用中显示出良好的学习和泛化能力,已被广泛地应用于诸多研究领域.本文采用支持向量机SVM、K-近邻法(K-nearest neighbor,K-NN)、概率神经网络(probabilistic neural network,PNN)、决策树(decision tree,DT)分类器,结合乳腺癌患者基因数据来预测患者的预后状态和评估治疗效果.结果表明:当使用高斯径向基核函数时,SVM通过5次交叉验证的最佳平均分类准确率达到了88.44%,优于K-NN(81.69%)、PNN(80.68%)和DT(71.19%)等分类器,表明该方法有望成为一种有效、实用的乳腺癌预后状态预测和治疗效果客观评价的工具.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com