Mental Task EEG Signal Classification with Different Signal Features
分别以自回归(autoregression,AR)模型系数、相关系数和信息熵作为信号特征对不同思维作业脑电(EEG)信号进行分类,其中相关系数和信息熵均是首次用于思维作业EEG信号的特征提取.实验结果显示,采用信息熵作为EEG信号特征的分类准确率总体上明显高于采用另两种特征参数,且受提取特征的数据分段长度的影响最小,有利于提高基于思维作业实时脑- 机接口的通信准确度和速率.同时,研究结果也进一步证实了高频信息可用于EEG的分类.