设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于CT成像的冠状动脉流固耦合分析

FluidSolid Coupling Analysis of the Coronary Artery Based on the CT Images

作者: 钱秀清  张晓慧  王燕  李宇  刘志成 
单位:首都医科大学生物医学工程学院(北京100069)
关键词: 冠状动脉;有限元方法;三维重建;流固耦合;管壁变形 
分类号:
出版年·卷·期(页码):2010·29·4(331-335)
摘要:

目的 基于冠状动脉血管弹性特征,研究冠状动脉管壁及其内部血液流动的各力学参数的变化规律。 方法 根据健康人体冠状动脉造影的CT图像,用Mimics软件三维重建冠状动脉多分支结构;利用有限元方法,构建多分支血管计算模型。在假设血管壁为线弹性材料,血液流动为不可压缩牛顿流体瞬态流动条件下,进行血液及管壁的流固耦合分析,分析各参数的变化规律。 结果 冠状动脉内血液的流速在心脏舒张期达到最大;在冠状动脉弯曲及分叉处,流速会出现低速区,血管壁出现较大变形及等效应力。结论  在进行冠状动脉粥样硬化形成机理的研究中,应考虑血管变形的影响。

Objective The mechanical parameters of blood flow and vascular wall for coronary artery are researched while the elastic property of the blood vessel is considered. Methods The geometry of coronary artery with branches was reconstructed using the software Mimics based on the CT images of coronary angiography for healthy human body. The mechanical property of vascular wall was simplified as the linear elasticity material and the flow of blood was taken as transient flow of an incompressible Newtonian fluid. Then, the solidfluid coupling model using the finite element method was used for analyzing the variations of the parameters. Results The numerical calculation results showed that the velocities of blood flow reached the maximum during the cardiac diastole. The lower velocityies of the blood flow, the bigger deformations and equivalent stresses of the vascular wall occured at the bent field of the blood vessel and neighborhood of the branches. Conclusions The deformation effect of the coronary artery wall should be considered while we are studying the mechanism of the coronary atherogenesis.

参考文献:

[1]Soulis JV, Giannoglou GD, Chatzizisis YS, et al. Spatial and phasic oscillation of nonNewtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis[J]. Coronary Artery Disease, 2006, 17 (4): 351-358.
[2]Boutsianis E, Dave H, Frauenfelder T, et al. Computational simulation of intracoronary flow based on real coronary geometry [J]. European Journal of Cardiothoracic Surgery, 2004, 26: 248-256.
[3]Prosi M, Perktold K, Ding ZH, et al. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model [J]. Journal of Biomechanics, 2004, 37: 1767-1775.
[4]Johnston BM, Johnston PR, Corney S, et al. NonNewtonian blood flow in human right coronary arteries: Transient simulations[J]. Journal of Biomechanics, 2006, 39: 1116-1128.
[5]Yada T, Hiramatsu O, Kimura A, et al. In vivo observation of subendocardial microvessels of the beating porcine heart using a needleprobe video microscope with a CCD camera[J]. Circ Res, 1993, 72: 939-946.
[6]Stein PD, Hamid MS, Shivkumar K, et al. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am J Cardiol,1994,73:431-437.
[7]Robicsek F, Thubrikar MJ. The freedom from atherosclerosis of intramyocardial coronary arteries: Reduction of mural stress—a key factor[J]. Eur J Cardiothorac Surg, 1994, 8:228-235.
[8]Thubrikar MJ, Baker JW, Nolan SP. Inhibition of atherosclerosis associated with reduction of arterial intramural stress in rabbits[J]. Artheriosclerosis (Dallas, TX),1988, 8:410-420.
[9]何凡, 李晓阳. 血流与动脉壁的流固耦合研究[J]. 医用生物力学, 2008, 23(5): 405-410.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com