[1]Soulis JV, Giannoglou GD, Chatzizisis YS, et al. Spatial and phasic oscillation of nonNewtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis[J]. Coronary Artery Disease, 2006, 17 (4): 351-358.
[2]Boutsianis E, Dave H, Frauenfelder T, et al. Computational simulation of intracoronary flow based on real coronary geometry [J]. European Journal of Cardiothoracic Surgery, 2004, 26: 248-256.
[3]Prosi M, Perktold K, Ding ZH, et al. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model [J]. Journal of Biomechanics, 2004, 37: 1767-1775.
[4]Johnston BM, Johnston PR, Corney S, et al. NonNewtonian blood flow in human right coronary arteries: Transient simulations[J]. Journal of Biomechanics, 2006, 39: 1116-1128.
[5]Yada T, Hiramatsu O, Kimura A, et al. In vivo observation of subendocardial microvessels of the beating porcine heart using a needleprobe video microscope with a CCD camera[J]. Circ Res, 1993, 72: 939-946.
[6]Stein PD, Hamid MS, Shivkumar K, et al. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am J Cardiol,1994,73:431-437.
[7]Robicsek F, Thubrikar MJ. The freedom from atherosclerosis of intramyocardial coronary arteries: Reduction of mural stress—a key factor[J]. Eur J Cardiothorac Surg, 1994, 8:228-235.
[8]Thubrikar MJ, Baker JW, Nolan SP. Inhibition of atherosclerosis associated with reduction of arterial intramural stress in rabbits[J]. Artheriosclerosis (Dallas, TX),1988, 8:410-420.
[9]何凡, 李晓阳. 血流与动脉壁的流固耦合研究[J]. 医用生物力学, 2008, 23(5): 405-410.
|