设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于PCA及SVM的运动想象脑电信号识别研究

Classification of Motor Imagery EEG Based on PCA and SVM

作者: 关俊强  杨帮华  马世伟  袁玲 
单位:上海大学机电工程与自动化学院自动化系,上海市电站自动化技术重点实验室(上海200072)
关键词: 脑机接口;主成分分析;支持向量机;希尔伯特-黄变换 
分类号:
出版年·卷·期(页码):2010·29·3(261-265)
摘要:

为了解决脑机接口(BCI)中不同意识任务下运动想象脑电信号的分类问题,提出了一种基于PCA及SVM的识别方法。针对Hilbert-Huang变换和AR模型提取的脑电信号特征,首先采用主成分分析PCA对高维特征向量进行降维处理,然后用支持向量机进行分类。最后将本方法分类结果和Fisher线性分类、概率神经网络分类结果进行比较。实验结果表明,该方法分类正确率较高,复杂度低,具有一定的有效性,可用于脑机接口中。

In order to solve the problem of the electroencephalogram (EEG) classification under different imagery task in brain computer interfaces (BCI),a new recognition method based on principle component analysis (PCA) and support vector machine (SVM) is presented in this paper.Four features of motor imagery EEG signals extracted by combining the HHT with AR model,first,PCA was utilized to reduce dimensions of the high dimensional feature vectors.Then,SVM was used to classify different EEG patterns of motor imagery.Finally,this method was compared with Fisher LDA (linear discriminant analysis) and probabilistic neural network (PNN).Experimental results showed that the proposed method could classify different EEG patterns of motor imagery effectively due to its higher classification accuracy and lower complexity so as to be utilized in online BCI system.

参考文献:

[1]Mason SG,Birch GE.A general framework for brain-computer interface design [J].IEEE Transactions,Neural System and Rehabilitation Engineering,2003,11(1):70-85.
[2]徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报,2007,37(4):629-631.
[3]Penga ZK,Tse PW,Chu FL.A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005:974-988.
[4]Huang ML,Wu PD,Liu Ying,et al.Application and Contrast in Brain-Computer Interface between Hilbert-Huang Transform and Wavelet Transform[C].The 9th International Conference for Young Computer Scientists,2008:1706-1710.
[5]Bashashati A,Fatourechi M,Ward RK,et al.TOPICAL REVIEW:A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J].Journal of Neural Engineering,2007,4:R32- R57.
[6]Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research (S0885-6125),2003,3(1):1157-1182.
[7]Lotte F,Congedo M,Lecuyer A,et al.TOPICAL REVIEW:A review of classification algorithms for EEG-based brain-computer interfaces[J].Journal of Neural Engineering,2007,4:R1-R13.
[8]孙见青,汪荣贵,胡韦伟,等.一种新的基于NGA/PCA 和SVM 的特征提取方法[J].系统仿真学报,2007,19(20):4823-4825.
[9]Benjamin Blankertz,Guido Dornhege,Matthias Krauledat,et al.The non-invasive Berlin Brain-Computer Interface:Fast acquisition of effective performance in untrained subjects.NeuroImage[J],2007,37:539-550.
[10]Huang NE,Zheng S,Long SR.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London,1998,454(A):903-995.
[11]Pfurtscheller G,Neuper C,Flotzinger D,et al.EEG based discrimination between imagination of right and left hand movement[J].Electroenceph Clin Neurophysiol,1997,103:642-651.
[12]Duda RO,Hart PE,Stock DG.Pattern Classification[M].北京:机械工业出版社,2003:94-96.
[13]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):33-34.
[14]谢松云,张海军.基于SVM的脑功能分类与识别方法研究[J].中国医学影像技术,2007,23(1):125-128.
[15]李钢,王蔚,张胜.支持向量机在脑电信号分类中的应用[J].计算机应用,2006,26(6):1432-1433.

 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com