设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于脑电信号的疲劳驾驶状态判断方法

EEG-Based Method to Determine the Drowsiness Degree of EEG Signal

作者: 李明爱  张诚  杨金福 
单位:北京工业大学电子信息与控制工程学院(北京100124)
关键词: 脑电信号;  疲劳驾驶;  独立成分分析;  疲劳指数;  频谱分析 
分类号:
出版年·卷·期(页码):2011·30·1(57-61)
摘要:

通过研究疲劳驾驶时脑电信号的特征,提出了一种基于独立分量分析(independent component analysis,ICA)的脑波疲劳状态判断方法。利用模拟驾驶系统,采用NT-9200动态脑电仪采集驾驶员在清醒和疲劳状态下(连续驾驶4h以上)的脑电信号,对采集的多导信号进行独立分量分析,去除EEG信号中的眼电、肌电及工频等干扰,经过快速傅里叶变换(fast fourier transform, FFT)后计算出脑波中多种功率谱密度,求得疲劳指数F。实验结果表明,在疲劳状态下的疲劳指数F明显高于清醒状态下的F。本文提出的脑波疲劳状态判断方法可有效用以判断驾驶员的疲劳程度。

The characteristic of electroencephalograph (EEG) signal in drowsy driving was researched. Based on independent component analysis (ICA) algorithm, a method of determining the drowsiness degree was proposed. In a simulated driving system, the EEG signals of subjects, in both sober and drowsy (driving continuously for more than four hours) states, were captured by EEG instrument of NT-9200. The multi channel signals were analyzed with ICA algorithm, and removed ocular electric, myoelectric and power frequency interferences, and power spectral densities were calculated after fast fourier transform (FFT), so the fatigue index F was obtained at last. Experimental results show that the index F of drowsy state was significantly higher than the index F of sober state. The method presented in this paper can be used for determining the drowsiness degree from EEG signal effectually.

参考文献:

[1]孙伟,张为公,张小瑞,等. 疲劳驾驶检测方法的研究进展[J]. 汽车技术,2009,(2):1-5.
[2]牟建霖. 疲劳驾驶是交通事故的起因之一[J].公路与汽运,2003,(4):14-16.
[3]王黎,于涛.基于脑电α波的非线性参数人体疲劳状态判定[J].东北大学学报,2005,26(12):1174-1177.
[4]彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589.
[5]陈炎,胡江碧,荣建,等. 脑电技术在驾驶行为分析中的应用[J].道路交通与安全,2006,6:15-18.
[6]宋健苗,丹民. 脑力疲劳客观评定方法研究进展[J].中华航空航天医学杂志,2006,17(1):74-76.
[7]Cao Xueliang,Miao Danmin,Liu Lianhong.Assessment methods on mental fatigue [J]. J Fourth MilMedUniv,2006,27(4):382-384.
[8]Murata A,Takasawa Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential [J]. International Journal of Industrial Ergonomics,2005,35(8):761-770.
[9]Jung TP,Makeig S,Stensmo M. Estimating alertness from the EEG power spectrum [J]. IEEE Trans on Biomedical Engineering,l997,44(1):60-69.
[10]张崇,郑崇勋,欧阳轶,等. 基于脑电功率谱特征的脑力疲劳分析[J]. 航天医学与医学工作,2008,21(1):35-39.
[11]马颖颖,张泾周,吴疆. 脑电信号处理方法[J]. 北京生物医学工程,2007,26(1):99-102.
[12]Boksem MAS, Meijman TF, Lorist MM. Effects of mental fatigue on attention:an ERP study[J]. Cognitive Brain Reasearch, 2005, 25(1):107.
[13]谢松云,张振中.基于ICA的脑电信号去噪方法研究与应用[J].中国医学影像技术,2007,23(10):529-533.
[14]周宗潭,董国华,徐昕,等.独立成分分析[M].北京:电子工业出版社,2007.
[15]史习智.盲信号处理[M].上海:上海交通大学出版社,2008.
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com