设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于三级滤波器的表面肌电信号降噪处理

Surface Electromyography Denoising Method Based on Three-Level Filter

作者: 雷培源  杨基海  陈香 
单位:中国科学技术大学电子科学与技术系(合肥230027)
关键词: 信号降噪;经验模态分解;肌电分解 
分类号:
出版年·卷·期(页码):2011·30·1(62-66)
摘要:

表面肌电信号(surface electromyography, sEMG)是一种非平稳微弱信号,而它的低信噪比是造成对其进行分解十分困难的主要原因之一。本文针对sEMG信号的噪声特点,提出基于经验模态分解(empirical mode decomposition, EMD)的三级滤波器技术来对sEMG信号进行预处理,即采用频谱插值法去除工频干扰,采用形态学运算去除基线漂移,采用经验模态分解去除白噪声。实验结果表明,本文所提出的方法不仅能够提高sEMG信号的信噪比,也能有效地保留运动单位动作电位(motor unit action potential, MUAP)的波形信息,这将有利于对MUAP的识别从而提高对sEMG信号的分解准确率。

Surface electromyography (sEMG) is a non-stationary weak signal. It is very difficult to decompose sEMG signal, one of the main reasons is the sEMG signal with low signal-to-noise ratio(SNR). In this paper, a method, which is named three-level filtering technology based on empirical mode decomposition(EMD), is presented for sEMG signal preprocessing. Three filtering algorithms are adopted according to the noise characteristics of sEMG signal, including spectrum interpolation for the removal of interference from power line, morphological filter for the removal of baseline drift and empirical mode decomposition for the removal of white noise. The experimental results demonstrate that the proposed three-level filtering technology can not only improve the SNR of sEMG signal but also effectively reserve the main waveform features of MUAP. This will facilitate the identification of the MUAP and sequentially to improve the accuracy of sEMG signal decomposition.

参考文献:

[1]张泾周,张光磊, 戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志, 2006, 23(5): 977-980.
[2]Clancy EA, Morin EL, Merletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12: 1-16.
[3]席旭刚, 加玉涛, 罗志增. 基于独立成分分析的表面肌电信号工频去噪[J].传感器学报, 2009, 22(5): 675-679.
[4]任小梅, 王志忠, 胡晓. 应用小波变换和ICA方法的肌电信号分解[J]. 数据采集与处理, 2006, 21(3): 272-276.
[5]李强. 表面肌电信号的运动单位检测[D]. 合肥:中国科技大学,  2008.
[6]季虎, 孙即祥, 毛玲. 基于小波变换与形态学运算的ECG自适应滤波算法[J]. 信号处理, 2006, 22(3): 333-337.
[7]Huang NE, Shen Z, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London, 1998, 454: 903-995.
[8]Boudraa AO, Cexus JC, Saidi Z. EMD-Based Signal Noise Reduction[J]. International Journal of signal processing, 2005, 1: 33-37.
[9]Andrade AO, Nasuto S, Kyberd P, et al. EMG signal filtering  based  on empirical mode decomposition[J]. Biomedical Signal Processing and Control,2006,1:44-55.
[10]Kopsinis Y, McLaughlin S. Empirical mode decomposition based denoising techniques[C]. IAPR Workshop: Cognitive Information Processing, 2008:42-47.
[11]毛玲, 孙即祥, 张国敏, 等. 基于形态滤波的心电信号基线矫正算法[J].信号处理, 2008, 24(4):582-585.
[12]中国科技大学. 表面肌电图系统及其电极板: 中国,PIDE090201[P]. 2009-03-23.
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com