[1]Bonacci E, Santacroce N, D′Amico N,et al.Nail-fold capillaroscopy in the study of microcirculation in elderly hypertensive patients[J].Arch Gerontol Geriatr, 1996, 22(Suppl.1):79-83.
[2]Chang CH, Tsai RK, Wu WC, et al.Use of dynamic capillaroscopy for studying cutaneous microcirculation in patients with diabetes mellitus[J]. Microvas Res, 1997, 53(2):121-127.
[3]Groner W, Winkelman JW, Harris AG,et al.Orthogonal polarization spectral imaging:a new method for study of the microcirculation[J].Nat Med, 1999, 5:1209-1212.
[4]Goedhart PT, Khalilzada M, Bezemer R, et al.S idestream dark field (SDF) imaging:a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation[J]. Opt Expr, 2007, 15(23):15101-15114.
[5]Dobbe JGG, Streekstra GJ, Atasever B,et al.The measurement of functional microcirculatory density and velocity distributions using automated image analysis[J].Med Biol Eng Comput, 2008, 46(7):659-670.
[6]Wu CC, Zhang G, Huang TC et al.Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation[J].Microvas Res, 2009, 78(3):319-324.
[7]Demir S, Mirshahi N, Tiba MH,et al.Image processing and machine learning for diagnostic analysis of microcirculation[C/OL].International Conference on Complex Medical Engineering (CME). DOI:10.1109/ICCME.2009.4906669.
[8]Dong G,Xie M.Color clustering and learning for image segmentation based on neural networks[J].IEEE Trans on Neur Netw, 2005, 16(4):925-936.
[9]Kohonen T.The self-organizing map[J].Neuroco, 1998, 21:1-6.
[10]Ultsch A,Siemon HP.Kohonen’s seIf organizing feature maps for exploratory data analysis[C].Proceedings of International Neural Networks Conference (INNC), 1990:305-308.
|