设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于典型相关分析和小波变换的眼电伪迹去除

Automatic Removal of Ocular Artifacts in EEG Signals by Using CCA and Wavelet Transformation

作者: 赵春煜    邱天爽 
单位:大连理工大学电子信息与电气工程学部(大连116024)
关键词: 脑电信号;眼电伪迹;典型相关分析;小波阈值 
分类号:
出版年·卷·期(页码):2011·30·5(474-479)
摘要:

目的 针对脑电信号中眼电伪迹去除尚存在的问题,提出一种基于典型相关分析与小波变换的
(wavelet-enhanced canonical correlation analysis, wCCA)自动去除眼电伪迹的算法。方法 首先,
充分利用脑电信号和眼电伪迹的空间分布特征,将基于典型相关分析的盲源分离算法分别应用于左右脑
区的混合信号中,从而保证典型相关分析分解得到的第一个典型相关变量(即左右脑区之间的最公共成
分),就是眼电伪迹分量。然后为了恢复泄漏在该伪迹分量中的脑电成分,对伪迹分量进行小波阈值滤
波,将高于某一阈值的小波系数置零,而保留低于阈值的系数。结果 与其他三种基于盲源分离去除眼电
伪迹的方法相比较,该方法在有效地自动去除眼电伪迹的同时,很好地保留了潜在的脑电信号,去除效
果明显优于其他三种方法。结论 由于该算法简单,处理速度较快,因此应用于实时的脑机接口系统中更
具优越性,为后续脑电信号的特征提取和分类分析提供了良好的基础。

Objective A new method of ocular artifacts removal in EEG
(electroencephalography) recordings, wavelet-enhanced canonical correlation analysis
(wCCA), is presented in this paper. Methods Firstly, considering the differences between
the spatial distributions of the EEG signals and the EOG signals, CCA is applied to the
mixed signals of left and right brain separately. There is no need to identify the artifact
component by subjective visual inspection, because the first canonical component found by
CCA for each dataset, also the most common component between the left and right hemisphere,
is definitely related to artifacts. Then wavelet thresholding is employed to recover the
cerebral activities leaked into this artifact component. The performance of the proposed
method is compared to the three popular ocular artifacts removal methods CCA, second-order
-blind identification(SOBI) and wavelet independent component analysis(ICA), in terms of
correlation coefficient and signal-to-artifact ratio (SAR). Results It shows that wCCA’s
performance is better than those of the other three methods for removing the most ocular
artifacts from EEG recording automatically without altering the cerebral components.
Conclusions Since wCCA is simple and rapid, it is more advantageous to be applied in true
time brain-computer interface system than the other three, and provides a good groundwork
for the feature extraction and classification analysis of electroencephalography.

参考文献:

[1]Romero S, Mananas MA, Barbanoj MJ. Ocular Reduction in EEG Signals Based on Adaptive
Filtering, Regression and Blind Source Separation [J]. Annals of Biomed Engin, 2009, 37
(1): 176-191.
[2]Congedo M, Pailler GC, Jutten. On the blind source separation of human
electroencephalogram by approximate joint diagonalization of second order statistics [J].
Clin Neurophy, 2008, 119(12): 2677-2686.
[3]Makarov VA, Castellanos NP. Recovering EEG brain signals: Artifact suppression with
wavelet enhanced independent component analysis [J]. Neuro Meth, 2006, 158(2): 300-312.
[4]Inuso G, La Foresta F, Mammone N, et al. Wavelet-ICA methodology for efficient
artifact removal from Electroencephalographic recordings [C]//International Joint
Conference on Neural Networks. Orlando: IEEE, 2007:1524-1529.
[5]Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using
higher-order statistics and independent component analysis [J]. of Neurosci Meth, 2007,
34(4): 1443-1449.
[6]高莉, 黄力宇. 基于独立分量分析的自适应最大熵算法对脑电干扰的识别与剔除 [J]. 航天医学
与医学工程, 2008, 21(2): 142-146.
[7]Clercq WD, Vergult A, Vanrumste B, et al. Canonical correlation analysis applied to
remove muscle artifacts from the electroencephalogram [J]. IEEE Trans Biomed Eng, 2006,
53(12): 2583-2587.
[8]张莉, 何传红, 何为. 典型相关分析去除脑电信号中的眼电伪迹的研究 [J]. 计算机工程与应用
, 2009, 45(31): 218-220.
[9]Siew-Cheok NG, Raveendran P. Enhanced u rhythm extraction using blind source
separation and wavelet transform [J]. IEEE Trans Biomed Eng, 2009, 56(8): 2024-2034.
[10]Romero S, Mananas MA, Barbanoj MJ. A comparative study of automatic techniques for
ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A
simulation case [J]. Comp in Biolog and Med, 2008, 38(3): 348-360.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com