目的 验证使用肌动图(mechanomyography,MMG)和肌电图(electromyography,EMG)两种信号共同作为假肢控制信号时,是否能提高假肢控制系统分类的准确度。方法 本文采用信号融合方法,通过融合6通道的MMG信号与2通道的EMG信号,以及基于模式识别的线性判别分析(linear discriminant analysis,LDA)算法,研制了基于MMG和EMG信号的假肢控制系统。结果 该系统能对采集到的信号进行处理并得出动作分类结果,然后控制假肢完成相应动作。对6位测试者的腕屈、腕伸、张开、握拳4类动作以及静止状态进行假肢控制的动作分类准确度实验,准确度达94.6%,比单独用MMG信号的精度88.5%或EMG信号精度90.4%效果更好。结论 基于MMG与EMG信号的假肢控制系统可以更好地实现假肢控制动作的有效分类,未来可应用于上臂截肢的残疾人。
|