设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
乳腺肿瘤超声图像特征参数量化研究进展

Overview of Quantitative Analysis of Feature Parameters in Breast Tumor Ultrasound Images

作者: 高东平  刘慧  池慧 
单位:中国医学科学院医学信息研究所(北京 100020)
关键词: 乳腺肿瘤;超声图像;量化分析 
分类号:
出版年·卷·期(页码):2011·30·6(656-660)
摘要:

乳腺肿瘤超声图像的特征量化分析对判别肿瘤的良、恶性具有重要价值。本文总结了良性和恶性乳腺肿瘤在超声图像上的特点,将乳腺良性肿瘤和恶性肿瘤鉴别特征在形状、边缘、边界、朝向、回声特点几个方面的量化方法和量化参数进行了较为全面的梳理,并对量化特征与肿瘤良、恶性之间的关系进行了分析。

It is of great value for the quantitative analysis of feature parameters in breast tumor ultrasound images to distinguish the carcinoid and the malignancy. We summarized the features of the benign and malignant breast ultrasound images, analyzed the quantitative methods and quantitative parameters of shape features, boundary features, edge features, orientation and echo characteristics to identify benign or malignant breast tumors. Finally, we discussed the relationship between the quantitative characteristics and the benign or malignant breast tumors.

参考文献:

[1]阳维.乳腺肿瘤的超声图像特征定量分析与良恶性识别[D].上海:上海交通大学,2009.
[2]Stavros AT. Sonographic evaluation of solid breast nodules [C]. Breast Cancer Res Symposium Mammographicum, 2004, 6(Suppl 1):3.
[3]Joo SY, Yang YS, Moon WK, et al. Computer—aided diagnosis of solid breast nodules use of an artificial neural network based on multiple sonographic features[J].Medical Imaging, 2004, 23(10): 1292-1300.
[4]彭玉兰.乳腺高频超声图谱[M].北京:人民卫生出版社,2006:81-82.
[5]周永昌,郭万学.超声医学[M].第4版.北京:科学技术文献出版社,2003:395-410.
[6]Starvos AT, Thickman D, Rapp CL, et al. Solid breast nodules:use of sonography to distinguish between benign and malignant lesions[J].Radiology, 1995, 196(1): 123-134.
[7]Chou YH, Tiu CM, Hung GS, et al. Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis[J]. Ultrasound in Med & Bio, 2001, 27(11): 1303-1306.
[8]Radhika S. Texture analysis of lesions in breast ultrasound images[J], Comput Medi Imag and Grap, 2002, 26(5): 303-307.
[9]Wenjia K, Rueyfeng C, Moon WK. Computer-aided diagnosis of breast tumors with different US systems[J]. Academic Radiology, 2002, 9(7): 793-799.
[10]Darren C, Rueyfeng C, Wenjia K. Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks[J]. Ultrasound in Medicine &Biology, 2002, 28(10): 1301-1310.
[11]Chen SJ, Cheng KS, Dai YC, et al. Quantitatively characterizing the textural features of sonographic images for breast cancer with histopathologic correlation [J].Ultrasound Med, 2005, 24(5):651-661.
[12]林其忠.乳腺肿瘤超声图像的计算机辅助诊断方法研究[D].上海:复旦大学,2007.
[13]哈章.基于灰阶超声序列图像的乳腺肿瘤计算机辅助诊断[D].合肥: 中国科学技术大学,2008.
[14]张晋熙,姜玉新.浅表器官组织超声诊断学[M].北京:科学技术文献出版社,2000:124.
[15]Castleman KR. 数字图像处理[M].北京:电子工业出版社, 2004:412.
[16]林江莉,汪天富,彭玉兰,等. 乳腺肿瘤超声图像形态特征选择[J],四川师范大学学报:自然科学版,2005,28(5): 615-618.
[17]蒋玲,罗莹,彭玉兰,等. 超声图像特征参数分析在乳腺肿瘤鉴别诊断中的应用[J].中国组织工程研究与临床康复,2010, 14(26): 4836-4840.
[18]Peura M, Iivarinen J. Efficiency of simple shape descriptors//Arcelli, et al. Advances in Visual Form Analysis[M]. Singapore: World Scientific, 1997: 443-451.
[19]Mudigonda NR, Rangayyan  RM, Desantels JEL.Gradient and texture analysis for the classification of mammographic masses[J].Medical Imaging, 2000, 19(10): 1032-1043.
[20]黄亚丽,李芬华,赵真. B超肝脏图像纹理特征提取方法的实验研究[J].中国医学影像技术, 2004, 20(12):1937-1939.
[21]Shen WC, Chang RF, Moon WK, et al. Breast ultrasound computer-aided diagnosis using BI-RADS features[J]. Academic Radiology, 2007, 14(8): 928-939.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com