设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
微波热疗凝固区域超声回波信号的小波去噪方法

Wavelet denoising method for ultrasonic echo signal in microwave hyperthermia coagulation zone

作者:               刘振临  杨春兰  盛磊  吴水才          
单位:           北京工业大学生命学院生物医学工程中心(北京 100124)    
关键词:           超声检测;局部分层阈值;小波变换;阈值去噪      
分类号:
出版年·卷·期(页码):2012·31·1(31-35)
摘要:

目的 针对用于监测微波热疗凝固区域的超声回波信号信噪比较低,强反射点较多,难以定位凝固区域边缘的特点,研究了一种基于小波分解的去噪方法。方法 在理论分析的基础上,对超声回波信号进行小波分解,根据不同频段信号的特征,进行局部分层小波阈值去噪,再通过小波重构得到去噪后的超声回波信号。结果 对比硬阈值去噪、软阈值去噪和本文所采用方法的效果,探讨了利用本文算法进行凝固区域边缘识别的可行性。结论 局部分层小波去噪算法可有效抑制噪声,保留信号的细节特征,达到优化超声回波信号的目的。

Objective In the monitoring process of the microwave hyperthermia,the ultrasonic echo signals were acquired with low signal noise ratio(SNR),a large number of strong reflection points,indistinct edges of coagulation zones. A denoising method based on the wavelet decomposition was studied in this paper. Methods Based on the theoretical research,an ultrasonic echo signal was decomposed into different frequency bands through wavelet transformation. According to the characteristics of these frequency bands,the signal was denoised by local multi-level threshold method and the denoised signal was obtained by wavelet reconstruction. Results The denoising effects of hard threshold,soft threshold and local multi-level threshold respectively were compared based on the experimental data. The feasibility of using this method to identify the edge of the coagulation zone was also investigated. Conclusions The experimental results showed that the local multi-level threshold method could depress noises effectively and retain the detailed characteristics to optimize the ultrasonic echo signals.

参考文献:

[1]Cui SG, Peng CB,Chen XL,et al. Ultrasound elastography performance enhancement using wavelet denoising[C]. 2010 International Conference on Audio,Language and Image Processing(ICALIP),2010:1238-1243.
[2]Yu JF, Liu DC. Thresholding-based wavelet packet methods for doppler ultrasound signal denoising[C]. 7th Asian-Pacific Conference on Medical and Biological Engineering,2010:408-412.
[3]张健毅.基于超声信号的小波变换研究[D].济南:山东师范大学,2009.
[4]Arthur RM,Basu D,Guo YZ.  3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(8):1724-1733.
[5]房曙光.小波时频分析方法在超声波信号处理中的应用[D].济南:山东大学,2009.
[6]李媛.小波变换及其工程应用[M].北京:北京邮电大学出版社,2010.
[7]张旸.小波分析方法在超声信号检测、处理及识别中的原理与应用[D].北京:中国科学院,2003.
[8]刘瑾.基于小波分析的超声波信号降噪研究[D].北京:中国石油大学,2010.
[9]吴从毛,马世伟,袁康.超声回波信号的小波软阈值去噪处理[J].仪表技术,2008(1):38-40.
[10]洪文学,陈媛媛,张璋.基于小波变换的脉搏波信号去噪[J].北京生物医学工程,2009,28(1):97-99.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com