设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于Contourlet变换的CT和锥形束CT图像配准算法

Image registration algorithm in CT and cone beam CT based on Contourlet transform

作者: 岳海振  李海云  刘迪 
单位:首都医科大学生物医学工程学院(北京 100069)
关键词: 图像配准;多分辨率分解;Contourlet变换;互信息 
分类号:
出版年·卷·期(页码):2012·31·2(140-145)
摘要:

目的 提出一种基于Contourlet变换,用于放射治疗定位的CT与锥形束CT(cone beam CT,CBCT)图像配准的方法。方法 利用Contourlet变换多尺度多方向的分辨特性,将待配准图像进行Contourlet变换分解,分解后的高频方向子带合成梯度图像,采用归一化互信息作为相似性测度,把梯度图像与低频方向子带以加权函数结合,进行临床医学图像的刚性配准,有效弥补了互信息配准中缺少空间信息的不足。结果 通过已知空间变换参数图像的配准结果验证了算法的准确性。配准后10幅图像变换参数的误差极小,且均方根误差接近于0。结论 该图像配准算法精确度高,并具有很好的鲁棒性,有助于提高图像引导放射治疗(image guided radiation therapy,IGRT)中解剖组织结构和靶区的定位精度。

Objective A novel image registration algorithm in CT and cone beam CT (CBCT) is proposed for the localization in radiotherapy based on Contourlet transform. Methods The multi-directional and multi-resolution Contourlet transform is applied to decompose the original image. The gradient image is constructed from the high frequency directional subbands,and normalized mutual informaion (NMI) is used as the similarity measures to calculate the mutual information of the gradient image and low frequency directional subband ,respectively.Then the synthesis similarity measure is the combination of mutual information for two images with a specific weight function The proposed approach can compensate for the lack of spatial information in the mutual information based on image registration.Results The algorithm accuracy is verified by comparing the registration results of ten medical images with specific spatial transformation parameters.  The errors of the spatial transformation parameters after registration are small,and the mean squared error (MSE) is close to zero. Conclusions The experimental results are accurate and the algorithm is robust. This method improves the localization accuracy of anatomical structures and targets in the applications of image guided radiation therapy (IGRT).

参考文献:

[1]殷蔚伯,胡逸民.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2008:1-5.
Yin Weibo,Hu Yinmin. Radiation therapy oncology[M]. Beijing:Peking Union Medical College press,2008:1-5.
[2]Pluim J,Maintz J,Viergever MA. Mutual information-based registration of medical images:a survey[J]. IEEE Transaction on Medical Imaging,2003,22(8):986-1004.
[3]Hong G,Zhang Y.Wavelet-based image registration technique for high-resolution remote sensing images[J].  Computers & Geosciences,2008,34(12):1708-1720.
[4]Huang XS,Zhang F.Multi-modal medical image registration based on gradient of mutual information and morphological haar wavelet[C]// Proceedings of 2010 International Conference on e-Education,e-Business,e-Management and e-Learning,Sanya. China:IEEE Computer Society Press,2010:39-42.
[5]Mallat SG,Hwang WH. Singularity detection and processing with wavelets[J]. IEEE Transactions on In formation Theory,1992,38(2):617-643.
[6]Mallat S,Zhong S. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(7) :710-732.
[7]Pluim JPW,Maintz JBA,Viergever MA. Interpolation artefacts in mutual information-based image registration[J]. Computer Vision and Image Understanding,2000,77(2):211-232.
[8]Tsao J. Interpolation artifacts in multimodality image registration based on maximization of mutual information[J]. IEEE Transactions on Medical Imaging,2003,22(7):235-260.
[9]Pluim JPW,Maintz JBA,Viergever MA. Image registration by maximization of combined mutual information and gradient information[J]. IEEE Transactions on Medical Imaging,2000,19(2):809–814.
[10]Wang XX,Tian J. Image registration based on maximization of gradient code mutual information[J]. Image Anal Stereol,2005,24:1–7.
[11]Duncan DYP,Minh ND. Directional multiscale modeling of images using the contourlet transform[J]. IEEE Transaction on Medical Imaging,2006,15(6):1610-1620.
[12]Minh ND,Martin V. The Contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
[13]Long ZL,Younan NH.Statistical image modeling in the Contourlet domain using contextual hidden Markov models[J]. Signal Processing,2009,89:946-951.
[14]陈志刚,尹福昌,孙孚.基于非采样Contourlet 变换高分辨率遥感图像配准[J].光学学报,2009,29(10):108-114.
Chen ZG,Yin FC,Sun F. Registration technique for high resolution remote sensing images based on nonsubsampled contourlet transform[J]. Acta Optica Sinica, 2009,29(10):108-114.
[15]罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010:164-165.
Luo SQ,Zhou GH. Medical image processing and analysis. [M]. Beijing:Science Press,2010:164-165.
[16]Liu JG,Tian J. Multi-modal Medical Image Registration Based on Adaptive Combination of Intensity and Gradient Field Mutual Information[C]// Proceedings of the 28th IEEE EMBS Annual International Conference,New York City,USA:IEEE Computer Society Press,2006:1429-1432.
[17]Hart PE,Duda RO,Stork DG. Pattern Classification Second Edition [M]. Beijing:China Machine Press,2004:359-363.
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com