设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
生理信号时间序列周期性和平稳性对近似熵和样本熵算法的影响分析

Influence analysis of physiological time-series periodicity and stability for approximate entropy and sample entropy

作者: 刘澄玉  赵莉娜  刘常春 
单位:山东大学控制科学与工程学院(济南 250061)
关键词: 近似熵;样本熵;生理信号时间序列;周期性;平稳性 
分类号:
出版年·卷·期(页码):2012·31·2(154-158)
摘要:

目的 提高近似熵和样本熵算法在评价生理信号时间序列非线性复杂度应用中的精度。方法 首先生成生理信号时间序列数据库,通过对周期序列和叠加有周期成分的非线性序列的分析,研究序列周期性对熵测度算法的影响,并通过对心率变异性(heart rate variability,HRV)序列在去除非平稳趋势前后的对比分析,研究序列平稳性对熵测度算法的影响。结果 在序列长度范围内,不同重复频率的周期序列熵测度不同,不同比重的周期成分叠加到非线性序列中引起序列熵测度的变化也不同。生理信号时间序列中大都存在非平稳成分,而非平稳成分会降低序列的复杂度,因此进行熵测度计算前首先要去除非平稳成分。结论 周期性和非平稳成分显著影响生理信号时间序列的熵测度算法。

Objective To improve the accuracy of approximate entropy(ApEn)and sample entropy (SamEn)in evaluating the nonlinear complexity of physiological time-series. Methods We firstly constructed a database of physiological time-series. Secondly,we studied the influence of periodicity on entropy measure by analyzing the periodic sequences and nonlinear sequences added with different proportion of periodic components. Thirdly,we investigated the influence of stability on entropy measure by comparing between the original heart rate variability(HRV) sequences and the HRV sequences after detrending. Results Within the limited length of time-series,the periodic sequences with different repetition rate had different calculated results of ApEn and SamEn,and different proportion of periodic components added to the nonlinear sequences could change the entropy measure. As physiological time-series were usually with some non-stationary components which reduced the complexity of the sequences,the non-stationary components should to be eliminated before the calculation of ApEn and SamEn. Conclusions The existent periodic and non-stationary components significantly affected the entropy measures.

参考文献:

[1]Liu CY,Liu CC, Li LP,et al. Systolic and diastolic time interval variability analysis and their relations with heart rate variability[C].Beijing,China:The 3rd International Conference on Bioinformatics and Biomedical Engineering(ICBBE2009),2009:1-4.
[2]Kobayashi T,Madokoro S,Wada Y,et al. Human sleep EEG analysis using the correlation dimension[J]. Clinical EEG,2001,32(3):112-118.
[3]Nieminen H,Takala EP. Evidence of deterministic chaos in the myoelectric signal[J]. Electromyogr Clin Neurophysiol,1996,36:49-58.
[4]刘澄玉,杨静,刘常春,等. 脉搏传播时间变异性谱分析的预处理方法研究[J]. 光电子·激光,2009,20(12):1690-1694.
[5]李成金,赵勋杰. 大鼠血压信号的分形性质研究[J]. 中国生物医学工程学报,1998,17(4):295-300.
Li CJ,Zhao XJ.Fractal property of systolic blood pressure in rats[J].Chinese Journal of Biomedical Engineering 1998,17(4):295-300.
[6]Porta A,Guzzetti S,Furlan R,et al. Complexity and nonlinearity in short-term heart period variability:comparison of methods based on local nonlinear prediction[J]. IEEE Trans Biomed Eng,2007,54(1):94-106.
[7]Maria HS,Peter J. Multiple window correlation Analysis of HRV power and respiratory frequency[J]. IEEE Trans Biomed Eng,2007,54(10):1770-1779.
[8]Pincus SM. Approximate entropy as a measure of system complexity[J]. Proc Nat Acad Sci USA,1991,88:2297-2301.
[9]Richman JS,Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol,2000,278(6):2039-2049.
[10]徐安,刘军,彭旗宇,等.动态近似熵快速算法在心率变异研究中的应用[J]. 同济大学学报:自然科学版,2005,33(4):520-524.
Xu A,Liu J,Peng Q Y,et al.Fast Algorithm of dynamic approximate entropy and its application in heart rate variance analysis[J].Journal of Tongji University:Nature Science,2005,33(4):520-524.
[11]Ning XB,Xu YL,Wang J,et al. Approximate entropy analysis of short-term HFECG based on wave mode[J]. Physica A,2005,346(3):475-483.
[12]Costa M,Goldberger AL,Peng CK. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters,2002,89(6):68-102.
[13]李锦,宁新宝. 短时心率变异性信号的基本尺度熵分析[J]. 科学通报,2005,50(14):1438-1441.
[14]李锦,宁新宝,马千里. 用联合熵分析短时心率变异信号的非线性动力学复杂性[J]. 生物医学工程学杂志,2007,24(2):285-289.
Li J,Ning XB,Ma QL.Nonlinear dynamical complexity analysis of short-term heartbeat series vsing joint entropy[J].Journal of Biomedical Engineering,2007,24(2):285-289.
[15]Miguel AG,Mireya FC,Juan RC. Errors in the estimation of approximate entropy and other recurrence-plot-derived indices due to the finite resolution of RR time series[J].IEEE Trans Biomed Eng,2009,56(2):345-351.
[16]Liu CY, Liu CC, Shao P,et al. Comparison of different threshold values r for approximate entropy:application to contrast the heart rate variability between heart failure and healthy control groups[J]. Physiological Measurement,2011,32(2):167-180.
[17]Mark R,Moody G.MIT-BIH Arrhythmia Database[EB/OL].[2011-03-17].Arailable:http://ecg.mit.edu/bdinfo.html.1997.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com