[1]胡春红.感兴趣血管段最佳视角和血管内超声与冠脉造影融合研究[D].天津,天津大学,2006.
[2]董海艳,王惠南,李虹.基于血管内超声图像序列的自动三维边缘检测[J].南京航空航天大学学报,2007,39(4):514-520.
[3]范幸义.计算机图形学[M].重庆:重庆大学出版社,2008:110-120.
[4]Osher S, Paragios N. Geometric level set method in imaging vision and graphics[M]. New York:Springer Verlag,2003:25-30.
[5]杨振林,李传富,周康源,等.一种基于水平集的前列腺超声图像自动分割算法[J].北京生物医学工程,2009,28(1):17-21.
[6]Brox T, Weickert J. Level set based image segmentation with multiple regions. Patten Recognition. Lecture Notes in Computer Seience,2004,3175:415-423.
[7]Ranchin F, Dibos F. Variational level set methods: from continuous to discrete setting, applications in video segmentation and tracking[C]. Genova:Proceedings of International Conference on Image Processing,2005:10-15.
[8]Tsai YH, Osher S. Total variation and level set based methods in image science[J]. Aetna Nmueriea,2005:1-61.
[9]Paragios N,Deriche R. Geodesic active regions and level set methods for motion estimation and tracking[J]. Computer Vision and Image Undesrtnading,2005,3:259-282.
[10]Cecil T, Marthaler D. A variational approach to path planning in three dimensions using level set methods[R]. ICES Report,2005,10:5-11.
[11]Lefohn AE, Kniss JM, Hnasen CD, et al. A streaming narrow-band algorithm: interactive computation and visualization of level sets[J]. IEEE Transactions Visualization and Computer Grpahies,2004,10(4):422-433.
[12]Osher S, Sehtian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79:12-49.
[13]Sehtian J. A fast marching level set method of monotonically advancing fronts[J]. Applied Mathematics,1996,93(4):1591-1595.
[14]Cardinal MR, Meunier J, Soulez G, et al. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions[J]. IEEE transactions on medical imaging, 2006,25(5):590-601.
|