设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于数学形态学的CT图像肝脏肿瘤提取研究

Segmentation of liver tumors for CT images based on mathematical morphology

作者: 刘耀辉  黄展鹏  鲍苏苏 
单位:湘南学院教务处(湖南郴州 423000)
关键词: 数学形态学;  CT图像;分水岭算法;肝脏肿瘤;控制标记符 
分类号:
出版年·卷·期(页码):2012·31·3(237-240)
摘要:

目的 肝脏肿瘤的提取是肝脏三维可视化、手术规划和模拟的基础,而当前肿瘤分割存在干预过多和分割效果不佳的问题。方法 本文通过对腹部CT图像进行高斯平滑以去除图像噪声和细密纹理,计算出图像的形态学梯度并用高、低帽变换进行增强,再根据用户选择点计算内部和外部标记符,然后基于控制标记符的分水岭算法分割图像,提取出腹部CT图像中的病变组织。结果 实验结果表明,该算法能够在较少的人工干预下快速分割出肝脏病变组织。结论 该算法实现了腹部CT图像中肝脏病变组织的提取。

Objective Segmentation of the liver tumor regions based on abdominal CT scan images is a crucial step in 3D visualization,surgical planning and simulation. In order to solve the disadvantage of CT image segmentation and reduce the manual interaction of the liver tumor segmentation, a novel segmentation algorithm for liver tumors is proposed. Methods Firstly, the CT images are smoothed by Gaussian smoothing filter for removing noises and textures. Secondly, the gradients of the images are measured by mathematical morphology and enhanced by Top-hat transform and Bot-hat transform. Thirdly, internal marker-controlled and external marker-controlled are calculated by the points chosen by the users. Finally, the regions of liver tumors from CT scan images are extracted by the watershed algorithm based on the marker-controlled. Results Experimental results show that this method can effectively and quickly segment the liver tumors with less user interaction than other algorithms. Conclusions This method realizes the segmentation of liver tumors for abdominal CT scan images.

参考文献:

[1]Numminen K, Sipila O, Makisalo H. Preoperative hepatic 3D models: virtual liver resection using three-dimensional imaging technique[J]. Eur J Radiol, 2005, 56(2):179-184.
[2]Reitinger B,Bornik A,Beichel R,et al.Liver surgery planning using virtual reality[J]. IEEE Computer Graph Appl,2006,26:36-47.
[3]Yamanaka J, Saito S, Fujimoto J. Impact of Preoperative Planning Using Virtual Segmental Volumetry on Liver Resection for Hepatocellular Carcinoma[J]. World J Surg, 2007,31(6): 1251-1257.
[4]李晓旭,马步云,彭玉兰.乳腺肿瘤“恶性晕”的超声图像分割[J]. 生物医学工程学杂志,2010,27(5):1020-1024.
Li Xiaoxu, Ma Buyun, Peng Yulan. On the segmentation of malignant halo in ultrasound images of breast tumor[J]. Journal of Biomedical Engineering, 2010,27(5):1020-1024.
[5]傅伟,万洪晓,熊平.基于透明度的肝脏肿瘤提取的研究[J]. 生物医学工程学杂志,2009,26(4):735-738.
Fu Wei, Wan Hongxiao, Xiong Ping. Research of liver tumor extraction based on transparency[J].Journal of Biomedical Engineering, 2009,26(4):735-738.
[6]周林,张建州,朱建峰,等.基于CT图像的周围型肺部疑似肿瘤分割[J].计算机应用研究, 2007,24(4):154-155.
Zhou Lin, Zhang Jiangzhou, Zhu Jianfeng, et al. Segmentation of peripheral pulmonary suspicious nodules in CT images[J]. Application Research of Computers, 2007,24(4):154-155.
[7]黄荔丽,王博亮,黄晓阳.基于DICOM格式的肝脏肿瘤CT图像分割[J].计算机技术与发展,2008,18(1):48-51.
Huang Lili, Wang Boliang, Huang Xiaoyang. Segmentation of liver tumor in CT image based on DICOM format[J]. Computer Technology and Development, 2008,18(1):48-51.
[8]陈灵娜,罗扬,陈增科. 一种新的肝肿瘤CT图像分割方法[J]. 计算机工程与应用,2009,45(34):222-224.
Chen Liangna, Luo Yang, Chen Zengke. New method on liver tumor CT image segmentation[J]. Computer Engineering and Applications, 2009, 45(34):222-224.
[9]阮秋琦.数字图像处理基础[M].北京:清华大学出版社, 2009.
Ruan Qiuqi. Shuzi Tuxiang Chuli Jichu[M]. Beijing: Tsinghua University Press, 2009.
[10]黄展鹏,易法令,周苏娟,等. 基于数学形态学和区域合并的医学CT图像分割[J].计算机应用研究,2010,27(11):4360-4362.
Huang Zhangpeng, Yi Faling, Zhou Shujuan, et al. Medical CT image segmentation based on mathematical morphology and region merging[J]. Application Research of Computers, 2010, 27(11):4360-4362.
[11]Soille P, Pesaresi M. Advances in mathematical morphology applied to geoscience and remote sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(9): 2042-2055.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com