设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
睡眠分期的符号转移熵分析

Symbolic transfer entropy analysis of sleep stage classification

作者: 井晓茹  胡晏婷  王俊 
单位:南京邮电大学通信与信息工程学院(南京210003)
关键词: 脑电图;符号化;相空间重构;符号转移熵;睡眠分期 
分类号:
出版年·卷·期(页码):2012·31·4(372-376)
摘要:

目的睡眠分期是衡量睡眠质量和诊治睡眠障碍性疾病的重要途径,转移熵是一个量化2个序列相关程度的参数。本文将基于符号化技术的符号转移熵首次应用在睡眠分期研究中,克服了以往方法对参数之间协调性要求高以及对噪声敏感的缺点。方法 通过提取相同个体相同时刻的清醒期和非快速眼动睡眠Ⅰ期的EEG、ECG信号,分别进行符号化、相空间重构后,计算符号转移熵,对两个睡眠阶段的符号转移熵进行t检验及多样本验证。结果 实验结果表明清醒期符号转移熵大于非快速眼动睡眠Ⅰ期的符号转移熵。经t检验表明这两个阶段的符号转移熵值有显著性差异,并通过多样本验证。随着睡眠加深,身体单元不断偶合,符号转移熵减小,与理论分析相符合。结论 清醒期和非快速眼动睡眠Ⅰ期的符号转移熵很好地体现了睡眠状态的变化,因此符号转移熵可用于睡眠分期,并成为研究睡眠自动化分期的极具潜力的分析工具。

Objective Sleep stage classification is important to the evaluation of sleep quality, the diagnosis and treatment of sleep disorders. Transfer entropy is a parameter to measure the relevance of two time sequences symbolic transfer entropy(STE), which is based on the technique of symbolization, may be the first application in the study of sleep stage classification. This method overcomes the drawbacks of requirement for the coordination between parameters and the sensitivity to noise contributions. Methods The EEG and ECG signals about the wake stage and the first stage of non-rapid eye movement sleep are extracted from the same people at the same time. After symbolic and space reconstruction, we compute the STE and test by t test with multi-samples. Results The STE of wake stage is larger than that of the first stage of non-rapid eye movement sleep and the difference between the two sleep stages is significant in t test. Brain cells and heart cells continue to be coupling, the STE become smaller as the sleep stage is deepening. Therefore, the experiment results are consistent with the theory. Conclusions The STE about the wake stage and the first stage of non-rapid eye movement sleep reflects the changes of sleep stages and can be applied in sleep stage classification. STE may be a promising tool for the analysis of automatic sleep classification.

参考文献:

[1]李玲,王瑞平.睡眠脑电信号的非线性动力学分析[J].北京生物医学工程,2010,29(3):304-307.
Li Ling, Wang Ruiping.Nonlinear dynamics analysis for sleep EEG[J]. Beijing Biomedical Engineering,2010,29(3):304-307.
[2]陆为民,刘福彬. 睡眠脑电信号的动力学分析[J].中国医学装备,2008,5(2):16-20.
Lu Weimin,Liu Fubin.Analysis of the nonlinear dynamics for sleep EEG[J]. China Medical Equipment,2008,5(2):16-20.
[3]葛家怡,周鹏,赵欣,等.脑电信号的多尺度熵分析[J].计算机工程与应用,2009,45(10):13-15.
Ge Jiayi, Zhou Peng, Zhao Xin, et al. Multiscale entropy analysis of EEG signal[J]. Computer Engineering and Applications,2009,45(10):13-15.
[4]Schreiber T. Measuring information transfer[J].PRL,2000, 85:461-464.
[5]Staniek M,Lehnertz K. Symbolic transfer entropy[J].PRL,2008,100(15):158101.
[6]马千里,宁新宝,王俊,等.描述睡眠脑电多重分形特性的一种新参数[J].科学通报,2006,51(15):1842-1846.
[7]Wessel N,Ziehmann C, Kurths J,etal. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates[J].Phys Rev E,2000,61:733-739.
[8]Li Caihong,Li Yibin,Song Yong. Adaptive behavior analysis of WMR based on chaotic phase-space reconstruction[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation,Jinan,China,July 6-9,2010:6441-6449.
[9]张淑清,贾健,高敏,等.混沌时间序列重构相空间参数选取研究[J].物理学报,2010,59(3):1576-1582.
Zhang Shuqing, Jia Jian, Gao Min,et al.Study on the parameters determination for reconstructing phase-space in chaos time series[J]. Acta Physica Sinica,2010,59(3):1576-1582.
[10]Grassberger P, Procaccai I. Measuring the strangeness of strange attractors[J].Physic D,1983,9:189-20
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com