设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于脉搏波传播时间测量的特征信号处理算法的研究

Characteristic signal processing algorithms based on the pulse wave propagation time measuring

作者: 丁有得  王晓云 
单位:广州医学院生物医学工程系(广州510182)
关键词: 脉搏波;算法;小波变换;传播时间 
分类号:
出版年·卷·期(页码):2012·31·4(382-386)
摘要:

目的针对目前加速度脉搏波特征点检测研究少的问题,本文提出一系列处理算法,并对加速度脉搏波关键点中的a、c两点进行了重点研究。方法 通过对加速度脉搏波采用防脉冲移动平均、小波滤波等方法预处理后,采取差分阈值与小波系数模极大值相结合的方法,对关键点位置进行检测。实验处理数据源于对15名在校学生采集的60组容积脉搏波,通过本文算法进行处理、检测和验证。结果 对于加速度脉搏波中关键点a、c两点的正确识别率达92%以上。结论 本文所述信号处理算法能够对脉搏波传播时间测量中的特征信号进行快速、准确的检出,为新型医疗监护设备的开发设计提供了技术支持。

Objective Since the algorithms about the accelerated pulse point detection are rare, this paper proposes a series of processing algorithms, and especially focuses on a and c, the two key points. Methods After the pretreatments of a moving average method for preventing the impulse interference and wavelet filtering method, we take the combined method of difference threshold and wavelet modulus maxima arithmetic to detect the key point positions. Experimental data come from 60 groups of volume pulse waves of 15 students, and then are verified the dependability through the processing algorithms introduced in this paper. Results The correct rate of a and c points are above 92%. Conclusions This signal processing algorithms can realize the rapid and accurate detection for pulse wave propagation time measurement, and can provide certain technical support to the new medical equipment design.

参考文献:

[1]Hiroshi Osanai. Plethysmographic acceleration pulse wave meter: US, 4432374[P].1984-02-21.
[2]Hidekatsu Inukai, Torru Oka. Blood pressure measuring apparatus: US, 0016058 A1[P].2007-01-18.
[3]雷奥. MSP430微控制器系列讲座(十五):脉搏式血氧仪的单芯片解决方案[J].电子世界, 2008(3):16-20.
Reo. MSP430 microcontroller lecture series (15) pulse oximeter of single chip solutions[J]. Electronics World. 2008(3):16-20.
[4]张磊,潘泉,张洪才,等. 小波域滤波阈值参数c的选取[J]. 电子学报,2001,29(3):400-402.
Zhang Lei, Pan Quan, Zhang Hongcai, et al. On the determination of threshold in threshold based de-noising by wavelet transform[J]. Acta Electronica Sinica, 2001,29(3):400-402.
[5]唐科狄,何平,魏化媚,等. 小波软阈值滤波在信号去噪中的有效性研究[J]. 舰船电子工程, 2009,29(7):128-167.
Tang Kedi, He Ping, Wei Huamei, et al. Research on the validity of wavelet soft-threshold filtering in signal  de-noising[J]. Ship Electronic Engineering, 2009,29(7):128-167.
[6]孟晋丽,潘泉,张洪才. 基于空域相关的小波域硬阈值滤波[J]. 计算机工程与应用, 2004(27):29-31
Meng Jinli, Pan Quan, Zhang Hongcai. Adaptive wavelet denoising by spatial correlation thresholding[J]. Computer Engineering and Applications, 2004(27):29-31
[7]Stéphane Mallat. 信号处理的小波导引[M]. 杨力华,戴道清,黄文良,等译. 北京:机械工业出版社,2007:132-137.
Yang Lihua, Dai Daoqing, Huang Hualiang, et al. A wavelet tour of signal processing[M]. Beijing: China Machine Press, 2007: 132-137.
[8]Bruce LM, Adhami RR. Classifying mammographic mass shapes using the wavelet transform modulus maxima method[J]. IEEE Trans Med Imaging , 1999,18:1170-1177.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com