设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
仿尺蠖气动肠道微机器人运动系统

Locomotion system of pneumatic inchworm-like microrobot for intestinal tract

作者: 高鹏  颜国正 
单位:上海宇航系统工程研究所(上海201108)
关键词: 微机器人;尺蠖运动;气体驱动;肠道诊断 
分类号:
出版年·卷·期(页码):2012·31·5(487-493)
摘要:

目的 肠道微机器人的设计采用仿尺蠖气动运动系统,以更好地无创诊断人体肠道。方法 机器人采用单节尺蠖结构,利用薄壁气囊和伸缩气缸作为径向钳位机构和轴向伸缩机构。气动系统由微型真空泵和流体分配器构成。该系统在流体分配器的控制下,微型真空泵可以驱动各运动机构,实现微机器人的主动运动。研制的机器人运动系统样机直径20 mm,长105 mm,质量109.15 g,可实现42.4 mm的径向变形和35 mm的轴向步距。测量了运动机构的输出驱动力,并测试了机器人样机在不同运动环境下的运动性能。结果 气动驱动系统能够向运动机构提供充足的驱动力,伸缩机构可以输出最大1.82 N的推力,钳位气囊最大钳位压强为23.69 kPa,机器人能够在不同角度的刚性管道中运动,并且在离体猪结肠中也能够有效运动。结论 仿尺蠖气动肠道微机器人运动系统为人体肠道机器人内窥镜研究提供了一种有效途径。

Objective To advance the minially invasive diagnosis in the intestinal tract, this paper presents a pneumatic inchworm-like locomotion system of the intestinal microrobot. Methods The robot with a single inchworm-like mechanism uses the thin-wall balloon as radial clamping machanism and the telescopic cylinder as axial telescopic mechanism. The pneumatic system is composed of a micro vacuum pump and a flow distributor. Under the control of the flow distributor, the vacuum pump can actuate all locomotion mechanisms to realise the acitive locomotion. A robotic prototype of 20 mm diameter, 105 mm length and 109.15 g weight can realize 42.4 mm radial deformation and 35 mm axial stroke. We measured the output forces of the locomotion mechanisms and tested the locomotion performance of the robot in different environments. Results The pneumatic system can supply the enough driving forces for the locomotion mechanisms. The telescopic mechnism can output the maximum traction of 1.82 N, and the clamping balloon can provide the maximum pressure of 23.69 kPa. The robot can not only move in the rigid pipe with  different slope angles, but also in the porcine colon in vitro. Conclusions The pneumatic inchworm-like locomotion system provides an effetive way for the research on the robotic endoscope in the intestinal tract.

参考文献:

[1]Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy [J]. Nature, 2000, 405: 417-418.
[2]Swain P. Wireless capsule endoscopy [J]. Gut, 2003, 52: 48-50.
[3]Nakamura T, Terano A. Capsule endoscopy: past, present, and future [J]. Journal of Gastroenterology, 2008, 43(2): 93-99.
[4]Toennies JL, Tortora G, Simi M, et al. Swallowable medical devices for diagnosis and surgery: the state of the art [J]. Proc. Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(7): 1397-1414.
[5]Phee L, Accoto D, Menciassi A, et al. Analysis and development of locomotion devices for the gastro-intestinal tract [J]. IEEE Transaction on Biomedical Engineering, 2002, 49(6): 613-616.
[6]Kim B, Lee S, Park JH, et al. Inchworm-Like Microrobot for Capsule Endoscope [C]//IEEE International Conference on Robotics and Biomimetics. Shenyang, China: IEEE, 2004: 458-463.
[7]Wang K, Yan G, Jiang P, et al. A Wireless Robotic Endoscope for Gastrointestine [J]. IEEE Transactions on Robotics, 2008, 24(1): 206-210.
[8]王益宁,林蔚,颜国正.蠕动式微型胃肠道机器人设计[J].北京生物医学工程,2012,31(2):183-187.
Wang Yining,Lin Wei,Yan Guozheng. The design of squirming micro-robot for the GI tract[J].Beijing Biomedical Engineering, 2012,31(2):183-187.
[9]Valdastri P, Webster RJ, Quaglia C, et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments [J]. IEEE Transactions on Robotics, 2009, 25(5): 1047-1057.
[10]Lee M, Kim Y, Leem S, et al. Locomotion characteristics of foxtail and foxtail type robot according to acting force [C]//3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo, Japan: IEEE, 2010: 604-609.
[11]Harada K, Oetomo D, Susilo E, et al. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results [J]. Robotica, 2010, 28 171-183.
[12]Nakamura T, Iwanaga T. Locomotion strategy for a peristaltic crawling robot in a 2-dimensional space [C]//IEEE International Conference on Robotics and Automation. Pasadena, USA:2008 ICRA, 2008: 238-243.
[13]Zimmermann K, Zeidis I, Behn C. Mechanics of Terrestrial Locomotion [M]. Berlin Heidelberg: Springer, 2009: 265-277.
[14]Zarrouk D, Sharf I, Shoham M. Advances in Robot Kinematics: Motion in Man and Machine [M]. Netherlands: Springer, 2010: 81-89.
[15]Dario P, Ciarletta P, Menciassi A. Modeling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon [J]. The International Journal of Robotics Research, 2004, 23(4-5): 549-556.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com