设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于PCA和Fisher判别分析的锋电位在线分类算法_________

Online spike sorting with PCA and Fisher discriminant analysis

作者:               卢小银  梁振  周保琢  周逸峰          
单位:           中国科学技术大学电子科学技术系(合肥230027)    
关键词:           锋电位;在线分类;主成分分析;Fisher判别分析;模板匹配;神经网络      
分类号:
出版年·卷·期(页码):2013·32·2(122-126)
摘要:

目的 大脑神经元胞外单细胞动作电位(即锋电位)的检测与分类,是研究神经系统处理信息机制的关键。常用方法是实验完成后对记录到的数据进行离线检测与分类,然而当需要在短时完成大量数据的处理或无线传输时,则需实现锋电位的在线检测与分类。方法 为实现在线分类,本文在利用主成分分析法(principal component analysis,PCA)和K均值分类法对一定量数据进行预分类的基础上,提出使用PCA结合Fisher判别分析的方法,并与基于距离的模板匹配法、BP神经网络分类法进行了分类效果和算法复杂度的比较。结果 仿真结果表明,该方法相对于其它两种方法在分类效果和算法复杂度上都具有一定的优势。结论 此方法是实现锋电位在线分类的不错选择。

Objective The detection and separation of neuron action potentials(spikes)is a key of information processing mechanism in the neural system research.Offline spike sorting approaches are currently used to detect and sort action potentials after experiments.Online sorting and detecting algorithms are required when researchers need to analyze or wireless transmit a large number of recordings in a short time.Methods To realize online spike sorting,we propose an algorithm combining Fisher discriminant analysis with principal component analysis(PCA)after performing a preprocessing with PCA and K-means.We test this algorithm and compare the efficiency and complexity with the other two algorithms:template matching based on distance and back propagation neural networks.Results The simulation results indicate that this method has an advantage over the other two methods in both efficiency and complexity.Conclusions This online spike sorting algorithm is effective.

参考文献:

[1]Lewicki MS. A review of methods for spike sorting:the detection and classification of neural action potentials[J].Network,1998,9(4):53-78.

[2]Rutishauser U, Schuman EM,Mamelak AN.Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings,in vivo[J].Journal of Neuroscience Methods,2006,154:204-224.
[3]Prinz AA, Abbott LF,Marder E.The dynamic clamp comes of age[J].Trends Neurosci,2004,27:218-224.
[4]Zumsteg ZS, Kemere C,O’Driscoll S,et al.Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems[J].IEEE Trans Neural Syst Rehabil Eng,2005,13(3):272-279.
[5]Wold S, Esbensen K,Geladi P.Principal component analysis[J]. Chemometrics and Intelligent Lab Syst,1987,2:37-52.
[6]孙即祥. 现代模式识别[M].2版.北京:高等教育出版社,2008.
Sun Jixiang.Modern pattern recognition[M].2nd ed. Beijing:Higher Education Press,2008.
[7]史峰,王小川,郁磊,等.Matlab 神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
Shi Feng,Wang Xiaochuan,Yu Lei,et al.Analysis of 30 neuron networks cases in Matlab [M].Beijing:Beijing Aerospace University Press,2010.
[8]Luca Citi, Jacopo Carpaneto,Ken Yoshida,et al.On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes[J].Journal of Neuroscience Methods,2008,172:294-302.
[9]Geng Xinling, Hu Guangshu,Tian Xin.Neural spike sorting using mathematical morphology,multiwavelets transform and hierarchical clustering[J].Neurocomputing,2010,73:707-715.
[10]Rodrigo Quian Quiroga,Spike sorting,Rodrigo Quian Quiroga.Scholarpedia Revision 2007,2(12):3583.
[11]Zhang Puming, Wu Jinyong,Zhou Yi,et al.Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem[J].Journal of Neuroscience Methods,2004,135:55-65.
[12]李军政, 伍亚舟.BP网络与复杂疾病相关的SNPs数据分析[J].北京生物医学工程,2011,30(5):543-545.
Li Junzheng,Wu Yazhou.Back-propagation neural network and the analysis of complex disease-related SNPs[J].Beijing Biomedical Engineering,2011,30(5):543-545.
[13]Quiroga RQ, Nadasdy Z,Ben-Shaul Y.Unsupervised spike detection and sorting with wavelets and super paramagnetic clustering[J].Neural Comput,2004,16:1661-1687.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com