设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
___________基于基因芯片数据的代谢网络重构及其应用_________

Reconstruction of metabolic network based on microarray data and its application

作者:               卫超  郑浩然          
单位:           中国科学技术大学计算机科学与技术学院(合肥230027)    
关键词:           代谢网络重构;微阵列数据;基因芯片;干细胞      
分类号:
出版年·卷·期(页码):2013·32·3(255-260)
摘要:

目的 基因组尺度的代谢网络重构提供了一种从系统层面深入观察生物体的方法,由此重构得到的网络是个体的“全基因组网络”。鉴于这种网络不能反映出不同环境条件下细胞内的动态变化过程,本文给出一种从基因芯片数据出发对生物体的实时“工作网络”进行重构的方法。方法 通过对基因芯片数据使用dChip软件计算探针的P-A call后可得到基因的表达谱,然后在所整合的多源数据库的辅助下经由“基因表达谱→酶→反应→代谢网络”的过程进行“工作网络”的自动化重构。结果 对来源于14种组织的182个干细胞样本进行工作网络重构的结果表明,所有干细胞之间具有较高的相似性,但不同组织来源的干细胞之间仍存在一定差异性。结论 以基因芯片数据为数据源的代谢网络重构方法可有效用于生物体的“工作网络”重构。

Objective Genome-scale metabolic network reconstruction offers an easy way to get a deep insight into organism. The metabolic network obtained is the “whole genome-scale metabolic network” of an individual. Since this kind of network cannot reflect the intracellular dynamic changes in different environments,we introduce a new method to reconstruct organism’s real-time “working network” based on microarray data. Methods We first use dChip software to calculate the probe’s P-A call value to get the gene expression profile and then reconstruct the “working network” through the way “gene expression profile→enzyme→reaction→metabolic network” in the assist of multisource database. Results Reconstruction of metabolic networks for 182 samples of stem cells from 14 different tissues reflect the high similarity in all the stem cells,while there are still some differences in stem cells from different tissues. Conclusions The method proposed in this paper can reconstruct “working network” based on microarray data effectively.

参考文献:

[1]Zeng AP,Ma HW. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms[J]. Bioinformatics,2003,19 (2):270-277.

[2]Francke C,Siezen RJ,Teusink B. Reconstructing the metabolic network of a bacterium from its genome[J]. Trends Microbiol,2005,13 (11):550-558.

[3]Karp PD,Paley SM,Krummenacker M,et al. Pathway Tools version 13.0:integrated software for pathway/genome informatics and systems biology[J]. Brief Bioinform,2010,11 (1):40-79.

[4]Lee CK,Klopp RG,Weindruch R,et al. Gene expression profile of aging and its retardation by caloric restriction[J]. Science,1999,285(5432):1390-1393.

[5]Li C,Wong W. DNA-chip analyzer (dChip). The Analysis of Gene Expression Data,2003:120-141.

[6]Huang DW,Sherman BT,Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009,4 (1):44-57.

[7]Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284 (5411):143-147.

[8]Sperger JM,Chen X,Draper JS,et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors[J]. P Natl Acad Sci USA,2003,100 (23):13350-13355.

[9]Müller FJ,Laurent LC,Kostka D,et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature,2008,455 (7211):401-405.

[10]Tan Pang-Ning,Steinbach Michael,Kumar Vipin (2005),Introduction to Data Mining,ISBN 0-321-32136-7.

[11]Plath K,Chin MH,Mason MJ,et al. Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures[J]. Cell Stem Cell,2009,5(1):111-123.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com