设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于表面肌电信号的手腕动作意图在线识别方法

On-line realization for motion intention recognition of wrist movements based on surface EMG signal

作者: 汪胜佩  杨惠  肖姝源  黄梦哲  王蓓 
单位:华东理工大学信息科学与工程学院自动化系(上海200237)
关键词: 表面肌电信号;手腕动作;动作意图;人机交互 
分类号:
出版年·卷·期(页码):2013·32·5(467-471)
摘要:

目的 设计并实现基于表面肌电信号的4种手腕动作意图的在线自动识别,为基于生物电信号的控制系

统提供一种可行的人机交互方式。方法 采集受试者4种手腕翻转动作时,人体上肢3处肌肉群的表面肌电信

号。计算肌电信号特征,并与初始化阶段设定的阈值相比较,获得特征参数的二值化处理结果,根据三通道

肌电二值化结果的逻辑识别组合,实现4种手腕翻转动作意图的在线识别。结果 通过10名受试者的在线测试

,识别准确率接近100%。结论 提出的动作意图识别方法,具有良好的在线处理性能,方法简单且易实现,

所提取的手腕动作意图可转换成不同的控制命令,能够提供一种有效可行的基于生物电信号的人机交互模式

Objective An automatic on-line algorithm for motion intention recognition of wrist movements based on surface eleotromyography (sEMG) was proposed.The ultimate purpose is to realize a usable human machine interaction for biomedical control systems.Methods Three channels of sEMG signals are recorded when the subject is doing four kinds of wrist turning gestures.The EMG parameter is compared with a threshold which is determined during the initial stage.The obtained comparison results are binary values.According to the designed recognition logic,the motion intention of wrist movement is extracted automatically.Results Totally,ten subjects are participated in the experiment and the recognition accuracy is near to 100%.Conclusions The proposed movement intention recognition method has good performance for on-line EMG processing,and is simple and easy to be realized.The obtained motion intention is usable for further control purposes to realize an effective biomedical signal-based human machine interaction.

参考文献:

[1]李静,赵丽,任淑艳,等.sEMG识别控制系统在虚拟仪器上平台上的实现[J].机床与液压,2011,39(13):72-74.
Li Jing,Zhao Li,Ren Shuyan,et al.Development of sEMG recognition and control system based on virtual instrument[J].Machine Tool & Hydraulics,2011,39(13):72-74.
[2]张华.肌电图在周围神经损伤诊断中的应用价值[J].临床神经电生理学杂志,2007,16(2):74-77.
Zhang Hua.Value of EMG in the diagnosis of peripheral nerve injury[J].Journal of Clinical Electroneurophysiology (China),2007,16(2): 74-77.
[3]崔丽英,潘华,翦凡,等.单纤维肌电图在30例炎性肌病患者诊断中的应用[J].中华神经科杂志,2005,38(5):290-292.
Cui LY,Pan Hua,Jian Fan,et al.Single fiber electromyography in diagnosis of patients with inflammatory myopathies[J].Chinese Journal of Neurology,2005,38(5):290-292.
[4]黄勇,王乐军,龚铭新,等.自行车运动员下肢肌肉SEMG特征及与输出功率的相关性[J].上海体育学院学报,2010,34(5):64-67.
Huang Yong,Wang Lejun,Gong Mingxin,et al.sEMG features of lower limb muscles and its correlations with output power of bicycle athletes[J].Journal of Shanghai University of Sport,2010,34(5):64-67.
[5]刘虔诚,田学隆,李烽,等.基于肌电生物反馈的脑卒中康复治疗仪的研制[J].生物医学工程学杂志,2009,26(2):418-420.
Liu Qiancheng,Tian Xuelong,Li Feng,et al.Development of the stroke rehabilitation apparatus based on EMG biofeedback[J].Journal of Biomedical Engineering,2009,26(2):417-420.
[6]Ferrerial A,Celeste WC,Cheein FA,et al.Human-machine interfaces based on EMG and EEG applied to robotic systems[J].Journal of Neuroengineering and Rehabilitation,2008,5:10.
[7]Oskoei MA,Hu H.Myoelectric control systems-A survey[J].Biomedical Signal Processing and Control,2007,2(4):275-294.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com