设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于模糊核聚类的脑部磁共振图像分割算法

An algorithm for MRI brain image segmentation based on fuzzy kernel clustering

作者: 相艳  贺建峰  易三莉  徐家萍  张娴文 
单位:昆明理工大学信息工程与自动化学院(昆明650500)
关键词: 图像分割;模糊核聚类;磁共振;直方图 
分类号:
出版年·卷·期(页码):2013·32·5(515-518)
摘要:

目的 针对普通模糊核聚类算法(kernel fuzzy c-means clustering algorithm,KFCM)存在的随机选择初始聚类中心的问题,本文提出一种根据直方图得到确定的初始聚类中心的模糊核聚类算法,以更快速地分割脑部磁共振图像。方法 首先利用区域生长法和形态学方法对原始脑部磁共振图像进行预处理,提取脑实质,然后计算出预处理图像的直方图,将直方图的4个峰值作为模糊核聚类的初始聚类中心,最后利用模糊核聚类算法对脑实质进行分割。结果 本文算法能有效地提取出脑组织中的白质(white matter,WM)、灰质(grey matter,GM)和脑脊髓液(cerebral spinal fluid,CSF)。与普通模糊核聚类算法相比,该算法的目标函数能更快地达到平稳,从而缩短运行时间。结论 本文算法与随机选择聚类中心的模糊核聚类算法相比,可减少迭代次数,更快地得到分割结果。

Objective To improve the random choice problem of the preliminary clustering centers in ordinary kernel fuzzy C-means clustering algorithm (KFCM),this paper proposes a method which could get assured preliminary clustering centers according to histogram and segment MRI brain image quickly.Methods Firstly the original image was processed by using the region growing and the mathematical morphology techniques and brain parenchyma was extracted.Then the histogram of the pre-segmented image was calculated and the four recognized histogram peaks were chosen as the preliminary clustering centers of KFCM.Finally KFCM was applied to segment the brain parenchyma.Results The proposed method could abstract the white matter (WM),gray matter (GM) and cerebral spinal fluid (CSF) from the brain image efficiently.The objective function of the proposed method tended to be steady more quickly than ordinary KFCM and the running time was shorter.Conclusions This proposed method can reduce the iteration numbers and quickly get segmentation results compared with the random choice centre of KFCM.

参考文献:

[1]Bezdek JC.Pattern recognition with fuzzy objective function algorithms[M].Boston: Kluwer Academic Publishers,1981.
[2]张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590.
Zhang Li,Zhou Weida,Jiao Licheng.Kernel clustering algorithm[J].Chinese Journal of Computers,2002,25(6):587-590.
[3]余学飞,李彬,陈武凡.基于模糊核聚类的MR图像分割新算法[J].南方医科大学学报,2008,28(4):555-557.
Yu Xuefei,Li Bin,Chen Wufan.A new algorithm for magnetic resonance image segmentation based on fuzzy kernel clustering[J].Journal of South Medicine University,2008,28(4):555-557.
[4]Liao L,Lin T,Li B.MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach[J].Pattern Recognition Letters,2008,29:1580-1588.
[5]Yan MS,Tsai HS.A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction[J].Pattern Recognition Letters,2008,29(12): 1713-1725.
[6]Liu,C.and Zhang,X.Gaussian kernelized fuzzy c-means with spatial information algorithm for image segmentation[J].Journal of Computers,2012,7(6): 1511-1518.
[7]沙秀艳,辛杰.基于最大熵的模糊核聚类图像分割方法[J].计算机工程,2011,37(10):187-191.
Sha Xiuyan,Xin Jie.Fuzzy kernel clustering image segmentation method based on maximum entropy[J].Computer Engineering,2011,37(10):187-191.
[8]骆娜琴,邓振生 .一种磁共振脑组织及肿瘤区域的提取方法[J].北京生物医学工程,2011,30(1):15-19.
Luo Naqin,Deng Zhensheng.An extraction algorithm of MRI brain tissue and tumor regions[J].Beijing Biomedical Engineering,2011,30(1):15-19.
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com