设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
MRI大脑图像灰质与白质的分割

Segmentation for brain grey matter and white matter of a MRI brain image

作者: 陈亮亮 
单位:陈亮亮。E-mail:puppymoon@163.com
关键词: MRI大脑图像;小波变换;大脑灰质;大脑白质;阈值分割;多尺度 
分类号:
出版年·卷·期(页码):2013·32·5(519-523)
摘要:

目的 利用小波变换对MRI大脑图像进行多尺度下的自动阈值处理,实现大脑灰质与白质的分割。方法 首先将MRI大脑图像去噪,接着进行预分割以去除非脑组织,余下的脑实质部分选择sym4小波函数对其一维直方图信号进行不同层次的小波系数的分解,实现多尺度下的自动阈值分割,从而提取脑实质中的灰质和白质。经过图像的后处理,以错误分割的百分比作为分割结果的评判标准。结果 该方法能正确分离白质和灰质,对多幅MRI大脑图像重复实验,计算得到的像素差异百分比不超过3.7%,错误分割的百分比在允许范围内。结论 该方法对于MRI大脑的灰白质分割具有一定的有效性,且操作简单、快速,分割效果理想。但由于小波阈值分割法的单一性,分割过程仍有人工干涉,分割结果也存在一定的过分割现象,应在此方法的基础上进一步研究和完善。

Objective To realize the segmentation of brain grey matter and white matter of a MRI brain image accurately by means of wavelet transformation which could automatically gain the threshold with multi-scale decomposition. Methods Firstly,The MRI brain image was denoised and pre-segmented to remove non-brain tissue. Then one-dimensional histogram signal of the rest brain tissue was decomposed by different levels of wavelet coefficients to realize automatically threshold segmentation under multi-scale,thus the brain grey matter and white matter were extracted. Finally,the results were evaluated by the percentage of error segmentation after the post-treatment. Results The expriment results showed that brain grey matter and white matter were correctly segmented,and the max percentage of error segmentation was 3.7%,which was within the allowable range. Conclusions The method is effective,easy and fast in segmentation for brain grey matter and white matter of a MRI image. However,due to the simplicity of the threshold segmentation with wavelet transformation,the whole process does not work without human intervention and there is some over-segmentation in the results. Further study and improvement should be made based on this method.

参考文献:

[1]余学飞.基于模糊理论的医学图像分割算法研究[D].广州:南方医科大学,2009.
Yu Xuefei.Research about algorithm based on fuzzy theory for medical image segmentation[D]. Guangzhou:Southern Medical University,2009.
[2]Lipton Richard J. DNA Solution of Hard Computational Problems[J]. Science,1995, 268 (4):542-545.
[3]Pemmaraju S,Mitra S,Shieh Y,et al. Multiresolution waveletdecomposition and neur o-fuzzy clustering for segmentation of radiographic images[J]. Proceedings of the Eighth Annual IEEE Symposium on Computer-Based Med-I cal Systems (CBMS. 95). 1995:142-149.
[4]Olivo JC.Automatic threshold selection using the Wavelet transform. CVGIP-GMIP,1994,56(3):205-218.
[5]邢凡,樊瑜瑾.基于小波变换多阈值彩色铁谱图像的分割方法[J].润滑与密封,2008,33(7):69-72.
Xing Fan,Fan Yujin. Multi-threshould segmentation method based on wavelet transformation for color ferrography image[J]. Lubrication and Sealing,2008,33(7):69-72.
[6]何军宝.脑部核磁共振图像的模糊均值抗噪分割算法[D].武汉:华中科技大学,2006.
He Junbao. Fuzzy c-means with entinoise segmentation algorithm for MRI brain image[D]. Wuhan:Huazhong University of Science and Technology,2006.
[7]Rajaqakse JC. Statistical approach to segmentation of single-channel cerebral M R images[J]. IEEE Trans Med Imaging,1997,16 (2):176-186.
[8]王建中.核磁共振脑图像分割方法的研究[D].长春:东北师范大学,2007.
Wang Jianzhong. Research on methods for segmentation of MRI brain images[D]. Changchun:Northeast Normal University,2007.
[9]聂生东,章鲁,顾顺德,等. 磁共振图像的分割[J]. 国外医学生物医学工程分册,1999,22(6):23-25.
Nie Shengdong,Zhang Lu,Gu Shunde,et al. Segmentation of brain images[J]. Foreign Medical Sciences:Biomedical Engineering,1999,22(6):23-25.
[10]刘静. 基于小波变换的图像分割技术研究[D]. 济南:山东大学,2005.
Liu Jing. Reaseach on teconology for images segmentation based on wavelet transformation[D]. Jinan:Shandong University,2005.
[11]Reddick WE,Glass JO,Cook EN,et al.Automated segmentation and classification of multi spectral magnetic  images using artificia  neural networks[J]. IEEE  Trans Med Imaging,1997,16(6):911-918.
[12]Li Bai, Yihui Liu, Dorothee Auer, Paul Morgan. Automatic Segmentation of Putamen from Brain MRI[J]. Technology & Automation,2001,19(8):679-698.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com