设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
支持向量机在肺结节CT图像中的应用

Application of support vector machine for pulmonary nodules in CT image

作者: 王晶晶  孙涛  赵枫朝  李霞  蔡博文  朱晓萌  郭秀花 
单位:首都医科大学公共卫生学院(北京100069)
关键词: CT图像;肺结节;Curvelet转换;纹理提取;支持向量机 
分类号:
出版年·卷·期(页码):2013·32·5(528-530)
摘要:

目的 探讨基于孤立性肺结节建立支持向量机预测模型效果,提高肺癌的早期诊断率。 方法对收集的55例患者的三正交位的4135张肺结节CT图像,应用Curvelet变换进行纹理提取,对提取的476个特征值应用支持向量机进行良恶性分类并预测,应用符合率、敏感度和特异度对预测结果进行评估。结果 CT图像符合率为78.0%,敏感度为88.6%,特异度为24.0%。结论 Curvelet转换提取三正交位肺结节纹理,用支持向量机建立预测模型,一定程度上有助于早期发现和诊断肺癌。

Objective To evaluate the prediction results of solitary pulmonary nodules using support vector machine model in order to improve the detection and diagnosis of early-stage lung cancer.Methods We collected 4135 CT images of benign or malignant solitary pulmonary nodules in three dimensions from 55 patients.Four hundred and seventy-six Curvelet transform textural features were used as parameters to establish support vector machine model,and the classification consistency,sensitivity and specificity were used to evaluate the forecast results.Results The classification consistency,sensitivity and specificity for the model were 78.0%,88.6% and 24.0%,respectively.Conclusions Based on Curvelet transform to extract textural features,support vector machine can improve the diagnosis of early-stage lung cancer to some extent.

参考文献:

[1]Jemal A,Bray F,Center MM,et al.Global cancer statistics[J].CA Cancer J Clin,2011,61(2):69-90.
[2]郭锋杰,范亚光,乔友林,等.HPV和肺癌关系的研究进展[J].中国肺癌杂志,2012,15(3):191-194.
Guo Fengjie,Fan Yaguang,Qiao Youlin,et al.Study advance of relationship between HPV and lung cancer[J].Chinese Journal of Lung Cancer,2012,15(3):191-194.
[3]韦春晖.肺癌早期诊断进展[J].临床肺科杂志,2010,15(8):1136-1138.
Wei Chunhui.The early diagnosis progress of lung cancer[J].Journal of Clinical Pulmonary Medicine,2010,15(8): 1136-1138.
[4]戴世明.CT技术在早期肺癌诊断中的应用[J].临床肺科杂志,2012,17(2):330-331.
Dai Shiming.The application of CT technology in diagnosis of early stage lung cancer[J].Journal of Clinical Pulmonary Medicine,2012,17(2):330-331.
[5]付杰,董云.50例周围型肺癌的CT诊断价值分析[J].中国医药科学,2011,1(21):98-99.
Fu Lei, Dong Yun. The analysis on CT technology in dignosis of 50 cases of peripheral lung cancer[J].China Medicine and Pharmacy,2011,1(21):98-99.
[6]Wang H,Guo XH,Jia ZW,et al.Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image[J].European Journal of Radiology,2010,74(1):124-129.
[7]吴海丰,刘韫宁,郭秀花,等.Curvelet变换在医学图像处理中的应用现况[J].北京生物医学工程,2010,29(4):432-435.

 Wu Haifeng,Liu Yunning,Guo Xiuhua,et al.The application status of Curvelet transformation in medical image processing[J].Beijing Biomedical Engineering,2010,29(4):432-435.
[8]Dettori L,Semler L.A comparison of wavelet,ridgelet,and curvelet-based texture classification algorithms in computed tomography.Computers in Biology and Medicine,2009,(37): 486-498.
[9]Chen M,Zhang JX.Color segmentation of nuclei of blood cell using support vector machine[J].Journal of Optoelectronics Laser,2006,17(4): 479-483.
[10]Zheng Z,Zhang YX,Hu YX.Investigation of eye gaze based on independent component analysis and support vector machine[J].Journal of Optoelectronics Laser,2007,18(7): 491-494.
[11]王瓛,郭秀花,李坤成,等.良恶性肺小结节CT图像基于灰度共生矩阵10种纹理特征研究[J].北京生物医学工程,2008,27(6):561-564,608.
Wang Huan,Guo Xiuhua,Li Kuncheng,et al.CT Images’10 texture features of small solitary pulmonary nodules patients using gray level co-occurrence matrix[J].Beijing Biomedical Engineering,2008,27(6):561-564,608.
[12]吴海丰,刘韫宁,孙涛,等.基于Curvelet变换提取肺结节图像纹理特征构建BP神经网络[J].北京生物医学工程,2011,30(5): 471-473.
Wu Haifeng,Liu Yunning,Sun Tao,et al.Classification of malignant and benign pulmonary nodules in CT image based on Curvelet transformation[J].Beijing Biomedical Engineering,2011,30(5): 471-473.
[13]Wu HF,Sun T,Guo XH,et al.Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography[J/OL].Journal of Digital Imaging. DOI: 10.1007/s10278-012-9547-6.
 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com