设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于胸部CT图像的肺结节分割

Lung nodule segmentation based on thoracic CT images

作者: 齐守良  司广磊  岳勇  孟现峰  蔡金凤  康雁                  
单位:                      东北大学中荷生物医学与信息工程学院(沈阳110819)        
关键词:                     肺结节分割;肺癌;计算机断层成像;计算机辅助诊断          
分类号:
出版年·卷·期(页码):2014·33·1(29-34)
摘要:

目的 提出一种从胸部CT图像中分割提取多种类型肺结节的算法,辅助肺癌诊断和疗效评估。方法  首先由放射科医生确定种子点和目标容积区域,再根据初分割结果自动识别非肺壁粘连结节和肺壁粘连结节。然后采用多阈值结合距离变换的方法分割非肺壁粘连结节,光线投射和直线拟合分割肺壁粘连结节。最后,将算法应用于85组患者数据(232个肺结节),并由高年资放射科医生评价分割结果的准确性。结果 本文算法鲁棒性强,能准确判别肺壁粘连和非肺壁粘连结节,从而适用于孤立、血管粘连、毛玻璃和肺壁粘连结节的提取。测试的232个结节中无异常发生,且分割速度较快。经放射医生评价,平均准确率达90%。结论 本文算法可以从胸部CT图像中分割提取4种类型肺结节,鲁棒性、准确性和速度均可满足实际临床需求,对肺癌筛查、诊断和疗效评估具有重要价值。

Objective To propose an algorithm that can extract certain types of lung nodule from thoracic CT images in order to aid the screening and treatment evaluation of lung cancer. Methods In the algorithm,after the radiologist determines the seed point and the volume of interest,the nodule is identified as non-juxta-pleural or juxta-pleural based on the raw segmentation result. Then a hybrid method of multi-level thresholding combined with distance transform is used to extract non-juxta-pleural nodule,ray casting and line fitting are applied for juxta-pleural nodule. Finally,the datasets including 85 patients (232 nodules) are utilized to evaluate the proposed algorithm,and the accuracy is evaluated by one experienced radiologist. Results This algorithm,with strong adaptive capacity,can recognize non-juxta-pleural and juxta-pleural nodules accurately,and extract the isolated solid,juxta-vascular,ground glass opacities and juxta-pleural nodules properly. The average segmentation accuracy exceeds 90% with high segmentation speed. Conclusions This algorithm can extract certain kinds of lung nodules from thoracic CT images,whose robustness,accuracy and efficiency can satisfy clinic requirements,and is helpful for lung cancer screening,diagnosis and treatment evaluation.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com