设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于数字胸片小波纹理特征的尘肺病早期诊断方法研究

Early diagnosis of pneumoconiosis on digital radiographs based on wavelet transform-derived texture features

作者: 朱碧云  陈卉  陈步东  张宽                  
单位:                      首都医科大学生物医学工程学院(北京100069)        
关键词:                     尘肺病;小波变换;熵;特征选择;支持向量机          
分类号:
出版年·卷·期(页码):2014·33·2(148-152)
摘要:

目的 探讨利用基于小波变换的熵纹理特征进行尘肺病诊断的方法,并研究相关的分类技术。方法 对70名健康体检者和40名尘肺病患者的数字X射线摄影(digital radiography,DR)图像进行纹理分析,提取小波熵纹理特征,并利用决策树进行特征选择。选取不同核函数的支持向量机(support vector machines,SVM)对DR胸片进行分类,通过5折交叉验证估计诊断分类的性能并进行评价。结果 对DR图像做8次小波分解后提取8个小波熵纹理特征(特征全集),其中6个经过特征选择组成特征子集。应用SVM进行分类时,基于特征子集的分类结果均好于基于特征全集的分类结果。线性核函数SVM的分类效果好于其他核函数SVM的分类效果,准确率达84.6%,ROC曲线下面积为0.88±0.04。结论 利用SVM以DR图像的小波熵为特征进行尘肺病诊断有较高水平,有助于尘肺病的早期诊断。

Objective To investigate the early diagnosis of pneumoconiosis on digital radiographs by means of wavelet transform-derived entropy and the related technologies of classification.Methods Wavelet transform-derived entropies were extracted from the digital X-ray radiographies(DRs) of 70 normal persons and 40 pneumoconiosis patients and were selected by decision tree.Support vector machines(SVMs) with different kernel functions were adopted to distinguish pneumoconiosis DRs from normal DRs.The classification performance was estimated and evaluated through 5-fold cross validation.Results The DR images were wavelet-discomposed for 8 times,resulting in 8 wavelet entropies to form the feature full-set,and six were selected to form the feature subset.The classification performances based on the feature subset were better than those based on the feature full-set when classification was done with SVMs.SVM with linear kernel function performed better than SVMs with polynomial and Gauss kernel functions,with accuracy of 84.6% and an area under the ROC curve of 0.88±0.04.Conclusions The early diagnosis of pneumoconiosis based on wavelet transform-derived texture features with SVM is of a high level.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com