设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于模糊自适应算法的低氧舱控制系统设计

Design of control system for hypoxic chamber based on fuzzy self-learning algorithm

作者: 王偲宇  俞梦孙  王彬华  吴锋                  
单位:                      北京航空航天大学生物与医学工程学院 (北京100191)        
关键词:                     常压低氧舱;大时滞系统;模糊自适应          
分类号:
出版年·卷·期(页码):2014·33·4(397-402)
摘要:

目的 缺氧是人类进入高原生活和工作面临的最严峻的挑战之一,因此需要适量的低氧训练以减轻因缺氧引发的高原反应。本文设计了一种新型常压低氧舱模型的控制系统,使舱内氧浓度能够模拟不同海拔高度高原的氧浓度,用于低氧训练和低氧研究。方法 控制系统采用模糊自适应算法,该算法结合专家算法与PD算法,能进行参数自我调整以适应环境的大时滞性和不稳定性。结果 经过12d低氧训练的检验,该控制系统使舱内海拔高度维持在目标范围以内,舱内环境在出现干扰后能及时恢复稳定。结论 该控制系统能克服低氧舱复杂多变的环境特性,鲁棒性强,精度较高,为长时间的低氧训练和低氧实验提供了重要平台。

Objective Hypoxia is one of the greatest threatens to those who come to plateau for living and working, therefore a proper amount of hypoxic training is essential for them to reduce altitude sickness caused by hypoxia before going there. This paper designs a control system for a new hypoxic chamber, which can simulate the oxygen concentration on plateau of different altitudes for hypoxic trainings and experiments. Methods The control system is based on fuzzy self-learning algorithm combined with expert algorithm and PD algorithm, with the ability to justify parameters itself to fit the environment of time-delay and instability. Results During a 12-day-test of hypoxic training, the simulating altitudes inside the chamber are controlled within expected limits, which is able to recover after interference occurred. Conclusions This system solves the problem of controlling difficulty due to the complex environment of the chamber, and provides strong robustness as well as high accuracy, which supplies a significant platform for hypoxic trainings and experiments.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com