设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于小波奇异点检测和阈值去噪的眨眼伪迹去除方法

A method for blink artifact removal based on wavelet singularity detection and thresholding denoising

作者: 牟锴钰  韦明  杨辉  彭振 
单位:中国航天员科研训练中心(北京100094)
关键词: 小波变换;奇异点检测;阈值去噪;眨眼伪迹 
分类号:
出版年·卷·期(页码):2015·34·3(251-255)
摘要:

目的 眨眼伪迹是脑电中一种常见且影响严重的伪迹。本论文提出一种基于小波奇异点检测和阈值去噪的眨眼伪迹去除方法,无需眼电参考信号,做到自动去除单导脑电信号中的眨眼伪迹。方法 首先利用小波奇异点检测特性以检测眨眼伪迹的峰值位置,然后只对眨眼伪迹区域进行小波阈值去噪。结果 实验结果表明,本方法能够有效检测眨眼伪迹,避免了普通方法去噪时对非眨眼区域的影响。结论 本方法使用的阈值和阈值函数优于典型的阈值和软、硬阈值函数,有效地去除了脑电中的眨眼伪迹。

Objective Blink artifact is common and has serious effect on EEG. To remove the blink artifacts in EEG automatically without a reference channel, this paper proposes a method for blink artifact removal based on wavelet singularity detection and thresholding denoising. Methods First, the detection property of wavelet singularity was used to detect the positions of blink artifact peaks, and then only the blink artifact zones were denoised by the wavelet thresholding method. Results The experimental results showed that the proposed method could effectively detect the blink artifacts and avoid affecting the EEG outside the blink artifact zones in usual methods. Conclusions The threshold and thresholding function used in the paper could effectively remove the blink artifacts in EEG and outperform the conventional soft or hard thresholding estimators.

参考文献:

[1]Croft RJ, Barry RJ. Removal of ocular artifact from the EEG: a review[J]. Neurophysiol Clin, 2000, 30(1):5-19.

[2]Kenemans JL, Molenaar PCM, Verbaten MN, et al. Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data[J]. Psychophysiology, 1991, 28:115-121.

[3]Krishnaveni V, Jayaraman S, Aravind S. Automatic identification and removal of ocular artifacts from EEG using wavelet transform[J]. Measurement Science Review, 2006,6(2):45-57.

[4]Shoker L, Sanei S, Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm[J]. IEEE Signal Processing Letters, 2005, 12(10): 721-724.

[5]Filipa V, Jeremy T, Barrie E. Semi-automatic identification of independent components representing EEG artifact[J]. Clinical Neurophysiology, 2009, 120: 868-877.

[6]Shao SY, Shen KQ, Ong CJ, et al. Automatic EEG artifact removal: a weighted support vector machine approach with error correction[J]. IEEE Trans Biomed Eng, 2009, 56(2):336-344.

[7]Zikov T, Bibian S, Dumount G. A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram[C]// Proceedings of the 2nd Joint EMBS/BMES Conference, Houstion, TX, USA 2002: 23-26.

[8]Kumar PS, Arumuganathan R, Sivakumar K, et al. A wavelet based statistical method for de-noising of ocular artifacts in EEG signals[C]// International Journal of Computer Science and Network Security(IJCSNS), 2008, 8(9): 87-91.

[9]Zikov T, Bibian S, Dumount G. A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram[C]// Houstion, TX, USA:Proceedings of the 2nd Joint EMBS/BMES Conference, 2002: 23-26.

[10]成礼智, 王红霞, 罗永. 小波的理论与应用[M]. 北京: 科学出版社, 2004:1-420 .

Cheng Lizhi, Wang Hongxia, Luo Yong. The Theories and Applications of Wavelet[M]. Beijing: Science Press, 2004:1-420.

[11]Johnstone IM, Silverman BW. Wavelet threshold estimators for data with correlated noise[J]. Journal of the Royal Statistical Society: Series B, 1997,59(2):319-351.

[12]谭郁玲. 临床脑电图与脑电地形图学[M]. 北京: 人民卫生出版社, 1999: 6-9.

Tan Yuling. Clinical EEG and Brain Electrical Activity Mapping [M]. Beijing: People’s Medical Publishing House, 1999: 6-9.

[13]杨福生. 小波变换的工程分析与应用[M]. 北京: 科学出版社, 1999:1-280.

Yang Fusheng. The Engineering Analysis and Applications of Wavelet Transform[M]. Beijing: Science Press, 1999:1-280.

[14]Yu Xiaohu, He Zhenya, Zhang Yisheng. Time-varying adaptive filters for evoked potential estimation [J]. IEEE Trans Biomed Eng, 1994, 41(11): 1062-1071.

[15]Erfanian A, Mahmoudi B. Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface[J]. Med Biol Eng Comput, 2005, 43(2):296-305.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com