设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于SVM的便携式睡眠监测系统设计

A design of sleep monitoring system based on support vector machines

作者: 林秀晶  钱松荣                          
单位:                                 复旦大学信息科学与工程学院(上海200433)            
关键词:                               睡眠监测;自动睡眠分析;支持向量机;便携性              
分类号:
出版年·卷·期(页码):2015·34·3(273-277)
摘要:

目的 睡眠监测是睡眠质量分析中重要的环节,但目前的睡眠监测系统复杂而且难以携带。本文提出基于支持向量机的便携式睡眠监测系统,以方便地实时监控睡眠。方法 该系统硬件部分由服务器和用户端设备构成,其中用户端设备负责数据采集和数据传输,服务器端负责数据分析及相关的资源管理。睡眠分析软件采用支持向量机(support vector machines, SVM)作为分析算法,在提取特征值的基础上,以有向无环图作为多分类策略分析得到睡眠的时相。结果 对于患者的睡眠脑电实验表明分析正确率高,所需的分析时间短。结论 该系统用户端设备体积小,方便携带,分析正确率高,实时性好,在睡眠监测领域具有良好的应用前景。
 

Objective Sleep monitoring is an important part of the analysis of sleep quality, yet the sleep monitoring system available now is complex and cumbersome. A portable sleep monitoring system based on support vector machines (SVM) is proposed in this paper with great convenience and efficiency. Methods The system’s hardware consists of the server and the user equipment. The user equipment with high portability is used for data acquisition and data transmission. The server is used for data analysis and resource maintenance. SVM is adopted as the automatic sleep analysis algorithm in the server. Based on extracted features, sleep stages are got with directed acyclic graph as the multi-classification method. Results The research results based on patient EEG analysis show that the system can reach a high accuracy rate and take short analysis time average analysis time of 1.45 seconds. Conclusions The compact user equipment is highly portable, and it can feedback the correct result to the users in real time, thus confirming that the design has a promising future in sleep monitoring.

参考文献:

[1]李颖洁, 邱意弘,朱贻盛. 脑电信号分析方法及其应用[M]. 北京:科学出版社, 2009:75-87.

Li Yingjie, Qiu Yihong, Zhu Yisheng. EEG Analysis Methods and Its Applications[M]. Beijing: Science Press, 2009:75-87.

[2]Kryger,钟南山,张秀华. 睡眠医学--理论与实践[M].北京:人民卫生出版社,2010:1-35.

Kryger, Zhong Nanshan, Zhang Xiuhua. Principles and Practice of Sleep Medicine[M]. Beijing: People’s Education Press,2010: 1-35.

[3]Chesson AL Jr, Ferber RA, Fry JM, et al. The indications for polysomnography and related procedures[J]. Sleep, 1997, 20(6): 423-487.

[4]赵阳,李建瑞,王利伟,等.北京市朝阳区成人打鼾及阻塞性睡眠呼吸暂停低通气综合征流行病学调查[J].中国医药导报 , 2013,10(27): 108-111.

Zhao Yang, Li Jianrui, Wang Liwei, et al. Epidemiological investigation of snoring and obstructive sleep apnea-hypopnea syndrome among the adults in Chaoyang District of Beijing City[J]. China Medical Herald, 2013,10(27):108-111.

[5]Maggard, Jessie Yang. Automation of sleep staging [D]. Canada: University of Waterloo, 2010.

[6]Berry RB, Brooks R, Gamaldo CE, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.0[M]. Darien, Illinois: American Academy of Sleep Medicine, 2012.

[7]Gorur D, Halici U, Aydin H, et al. Sleep spindles detection using short time Fourier transform and neural networks[C]//Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International Joint Conference on IEEE, 2002, 2: 1631-1636.

[8]Janjarasjitt S. Examination of temporal characteristic of sleep EEG subbands based on the local min-max[C]//Biomedical Engineering International Conference (BMEiCON), 2012. IEEE, 2012: 1-4.

[9]Burges CJC. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.

[10]Platt JC, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification[J]. MPS, 1999,12: 547-553.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com