设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
用于三维医学图像配准的“粗精”混合算法研究_

A ‘coarse and fine’ hybrid algorithm for three-dimensional medical image registration

作者: 翁飞  侯文广  曾明平 
单位:武汉大学中南医院设备处(武汉430071) 
关键词: 图像配准;主成分分析;Powell优化算法 
分类号:R318.04;TP391.9
出版年·卷·期(页码):2016·35·1(12-17)
摘要:

目的 三维医学图像配准能够为临床诊断提供更多更丰富的信息,是医学图像处理领域的研究热点。本文针对配准中传统方法很难兼顾到配准的准确度和速度,提出一种基于“粗精”混合配准的算法。方法 首先,采用主成分分析方法对图像进行粗配准,减小浮动图像和参考图像之间的差异,得到精配准良好的初始参数;然后,采用改进的Powell算法在初始参数的基础上进行精配准;最后,以三维MRI图像为例设计了两组实验进行验证。结果 该方法配准精度高,旋转参数误差低至0.001,得到的图像灰度误差可限制在2以内。此外与全局优化方法相比,该方法保证配准精度的同时,在速度上可提高2~3倍。结论 实验证明该方法可同时兼顾配准的准确度和速度。

Objective Three-dimensional medical image registration can provide more comprehensive information for clinical diagnosis and is a hot field of medical image processing. Traditional registration methods are difficult to take into account the accuracy and speed of registration at the same time. To solve the problem,this paper proposes an method based on ‘coarse and fine’ hybrid registration algorithm. Methods First,principal component analysis was used for coarse image registration in order to reduce the difference between floating images and the reference images and get good initial fine alignment parameters. Then,improved Powell algorithm was used for refined registration based on initial parameters. Finally,two groups of experiments based on 3D MRI images were designed to verify the method. Results The registration accuracy of this method was high,in which the rotation parameter error was about 0.001 while the image gray level error was limited to 2. Additionally,this method could be 2 to 3 times faster than the global method while the registration accuracy not be reduced. Conclusions Experiments illustrated the registration accuracy and speed could be taken into account at the same time in this method.

【Keywords】


参考文献:

[1]俞亚青,田学隆,闫春红. 医学图像配准方法分类及现状[J]. 重庆大学学报:自然科学版,2003,26(8):114-118.

Yu Yaqing,Tian Xuelong,Yan Chunhong. Classification and state of medical image registration methods[J]. Journal of Chongqing University:Natural Science Edition,2003,26(8):114-118.

[2]罗述谦,周果宏. 医学图像处理与分析[M]. 北京:科学出版社,1992:140-141.

[3]van den Elsen PA,pol EJD,Viergever MA,et al. Medical image matching a review with classification [J]. IEEE Engineering in Medical and Biology,1993,12(4):26-39.

[4]Maurer CR,Fitzpatrick J. A review of medical image registration[M]//Mociunas ed. Park ridge,IL,AANS:Interactive Image Guided Neurosurgery,1993:17-44.

[5]郭科,陈聆,魏友华.最优化方法及其应用[M]. 北京:高等教育出版社,2007.

[6]Jolliffe I. Principal Component Analysis[M]. Hoboken:New Jersey:John Wiley & Sons,Ltd,2002.

[7]李了了,邓善熙,丁兴号. 基于大津法的图像分块二值化算法[J]. 微计算机信息,2005,21(8-3):76-77.

Li Liaoliao,Deng Shanxi,Ding Xinghao. Binarization algorithm based on image partition derived from Da-Jing method [J]. Control & Automation,2005,21(8-3):76-77.

[8]Powell MJD. On the convergence of the variable metric algorithm[J]. IMA Journal of Applied Mathematics,1971,7(1):21-36.

[9]何利民. Powell 方法的收敛速度[J]. 复旦学报:自然科学版,1988,(3):68-75.

He Limin. Convergence rate of Powell method[J]. Journal of Fudan University:Natural Science,1988,(3):68-75.

[10]Fogel GB,Corne DW.Evolutionary Computation in Bioinformatics[M]. San Francisco:Morgan Kaufmann,2002.

[11]郭变芳. 三维医学图像刚体配准[D]. 武汉:华中科技大学,2009.

Guo Bianfang. 3D rigid medical image registration[D]. Wuhan:Huazhong University of Science & Technology,2009.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com