设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种多特征融合的Web医学信息语义关系抽取方法

An approach to relation extraction in the area of medical information on web based on multi-feature fusion

作者: 龙丽英  闫健卓  方丽英  李鹏英  刘欣悦 
单位:北京工业大学电子信息与控制工程学院(北京100124)
关键词: Web医学信息;语义关系抽取;多特征;混合句法分析;支持向量机 
分类号:R318.04;TP391.04
出版年·卷·期(页码):2016·35·3(243-248)
摘要:

目的 为给用户提供更为相关、整体和结构化的Web医学信息,提出一种多特征融合的语义关系抽取方法,以解决中文Web医学信息中两两医学实体之间语义关系的抽取。方法 首先在混合句法分析算法的基础上构造包含词项、语义、词性、交互词、实体对距离、实体类别以及最短依赖关系特征的特征向量并结合支持向量机实现。对Web医学信息中师徒关系、擅长关系及从属关系抽取实验,比较在不同句法分析下、不同特征作用及不同机器学习算法下的语义关系抽取效果。结果 从F估计和算法运行时间来看,混合句法分析下效果最佳。随着特征的加入,抽取效果不断提升,最后,对三类语义关系抽取最终获得81.16%、95.94%和86.16%的F估计值。结论 基于多特征融合的语义关系抽取方法对于Web医学信息语义关系的抽取具有很好的效果。

Objective To provide more related,holistic and structured result for users by using the information extraction technology for the request of medical information on web.Methods This paper describes an approach to relation extraction in the area of medical information on web based on multi-feature fusion,in which the support vector machine algorithm combines with the feature vectors constructed by lexicon,semantics,part of speech,interactive,distance,entity type and shortest dependency relation path based on mixed parsing algorithm.This paper compares the results of relation extraction on different parsing,different features and different machine learning algorithm.Results From the view of F-measure and running time,the result of mixing parsing is perfect.By adding different feature,the results are promoted continually and finally the F-measure of the three relation extraction is 81.16%,95.94% and 86.16%,separately.Conclusions The approach to relation extraction in the area of medical information on web based on multi-feature fusion has a good performance.

参考文献:

[1]Guo J, Xu G, Cheng X, et al. Named entity recognition in query[C]//Proceedings of the 32nd international ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2009: 267-274.

[2]Balog K, de Vries AP, Serdyukov P, et al. The first international workshop on entity-oriented search (EOS)[C]//ACM SIGIR Forum. ACM, 2012, 45(2): 43-50.

[3]Peng C, Gu J, Qian L. Research on Tree Kernel-Based Personal Relation Extraction[M]//Natural Language Processing and Chinese Computing. Springer Berlin Heidelberg, 2012: 225-236.

[4]Zhou GD, Zhang M. Extracting relation information from text documents by exploring various types of knowledge[J]. Information Processing & Management, 2007, 43(4): 969-982.

[5]Grave E. A convex relaxation for weakly supervised relation extraction[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014.

[6]邓擎, 樊孝忠, 杨立松. 用语义模式提取实体关系的方法[J]. 计算机工程, 2007, 33(10):212-214

Deng Qing, Fan Xiaozhong, Yang Lisong. Entity relation extraction method using semantic model[J]. Computer Engineering, 2007, 33(10): 212-214.

[7]Li W, Zhang P, Wei F, et al. A novel feature-based approach to Chinese entity relation extraction[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers. Association for Computational Linguistics, 2008: 89-92.

[8]Zelenko D, Aone C, Richardella A. Kernel methods for relation extraction[J]. The Journal of Machine Learning Research, 2003, 3: 1083-1106.

[9]Liu B, Qian L, Wang H, et al. Dependency-driven feature-based learning for extracting protein-protein interactions from biomedical text[C]//Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics, 2010: 757-765. 

[10]Miyao Y, Sagae K, Stre R, et al. Evaluating contributions of natural language parsers to protein-protein interaction extraction[J]. Bioinformatics, 2009, 25(3): 394-400.

[11]Kang N, Singh B, Bui C, et al. Knowledge-based extraction of adverse drug events from biomedical text[J]. BMC bioinformatics, 2014, 15(1): 64.

[12]Had M, Jungermann F, Morik K. Relation extraction for monitoring economic networks[M]//Natural Language Processing and Information Systems. Springer Berlin Heidelberg, 2010: 103-114.

[13]Miyao Y, Ohta T, Masuda K, et al. Semantic retrieval for the accurate identification of relational concepts in massive textbases[C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2006: 1017-1024.

[14]Fei Wu, Weld DS. Open information extraction using wikipedia[C]// The Annual Meeting of the Association for Computational Linguistics (ACL-2010), 2010:118-127.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com