设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于小波域主成分分析的心电压缩算法

An ECG compression algorithm based on wavelet domain principal component analysis

作者: 张彪  邱天爽 
单位:大连理工大学电子信息与电气工程学部(辽宁大连116024)
关键词: 多通道;心电;压缩;小波域主成分分析;分层编码 
分类号:R318.04
出版年·卷·期(页码):2016·35·3(254-258)
摘要:

目的 为降低心电信号存储和传输的数据量,并克服传统心电压缩方法只利用导联内相关性的劣势,本文提出一种基于小波域主成分分析和分层编码(wPCA_LC)的压缩方法。方法 首先通过心电电极获取12通道心电数据,对所有通道的心电信号做小波变换,每个尺度下的小波系数组成小波系数矩阵,在每个系数矩阵上做主成分分析(principal component analysis,PCA),之后对小波系数小的主成分做[位置增量,数据]的编码方式,其他主成分采用霍夫曼编码,最后使用本文算法压缩圣彼得堡心率失常数据库。结果 实验表明,在均方根误差为5.2%时,本文算法的压缩比为71,远高于基于稀疏分解的方法和基于小波变换阈值选择的方法。结论 基于小波域主成分分析的心电压缩算法对多导联心电信号具有较好的压缩性能。

Objective In order to reduce the amount of ECG signal to be stored and transferred,and to overcome the disadvantage of only making use of correlation in leads in traditional ECG compression methods,this paper proposes a compression method based on wavelet domain principal component analysis and hierarchical coding (wPCA_LC).Methods First we obtain ECG data of 12 channels through the ECG electrodes,and transform ECG signals of all channels into wavelet domain,each scale of the wavelet coefficient forms the wavelet coefficient matrixs.Then we run principal component analysis (PCA) on each coefficient matrix,encoding the wavelet coefficient with small amplitude with [position increment,data] style,other components adopt Huffman coding.At last,Physionet St.Petersburg INCART 12-lead Arrhythmia Database is tested by this method.Results Experiments show that when the root mean square error reaches 5.2%,this method’s compression ratio can achieve 71,much higher than the method based on sparse decomposition and threshold selection method based on wavelet transform.Conclusions wPCA_LC method has good compression performance on multi-channel ECG signal.

参考文献:

[1]Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains[J]. Biomedical Signal Processing and Control, 2012, 7(5):481-489.

[2]Wana C, Yeha MF, Changa KC. Real-time ECG telemonitoring system design with mobile phone platform[J]. Measurement, 2008, 41(5):463-470.

[3]陈晓婕,覃晓波,张琴,等. 胸部肿瘤调强放疗后动态心电图异常的研究[J]. 中国医药导报,2014, 11(7):78-80, 84.

Chen Xiaojie, Tan Xiaobo, Zhang Qin, et al. Study on changes of dynamic electrocardiogram in patients with thoracic neoplasm after intensity modulated radiation therapy[J]. China Medical Herald, 2014, 11(7):78-80, 84.

[4]Luisa FP, Rafael EC, Manuel BV, et al. Compressed sensing based method for ECG compression[C]. Prague:Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference, 2011:761-764.

[5]Akhter S, Haque MA. ECG compression using run length encoding[C]. 18th European Signal Processing Conference(EUSIPCO-2010), Aalborg Denmark, 2010:1645-1649.

[6]Manikandan MS, Dandapat S. Wavelet threshold based ECG compression using USZZQ and Huffman coding of DSM[J]. Biomedical Signal Processing and Control, 2006, 1(4):261-270.

[7]Benzid R, Marir F, Boussaad A, et al.Fixed percentage of wavelet coefficients to be zeroed for ECG compression[J]. Electronics Letters, 2003, 39(11):830-831.

[8]李延龙,吕文红,郭银景, 等. 基于HMM的心电数据压缩方法研究[J]. 计算机工程与应用, 2006, (25):183-185.

Li Yanlong, Lyu Wenhong, Guo Yinjing, et al. Research of ECG data compression method based on HMM[J]. Computer Engineering and Applications, 2006, (25):183-185.

[9]王兴元,孟娟. 基于小波变换和矢量量化的二维ECG数据压缩算法[J]. 中国生物医学工程学报, 2007, 26(3):336-341.

Wang Xingyuan, Meng Juan. Two-dimensional ECG data compression algorithm based on the wavelet transformation and vector quantization[J]. Chinese Journal of Biomedical Engineering, 2007, 26(3):336-341. 

[10]Joseph B, Acharyya A, Rajalakshmi P. A low complexity on-chip ECG data compression methodology targeting remote health-care applications[C]. Chicago, IL:Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014.

[11]Zigel Y, Cohen A, Katz A. The weighted diagnostic distortion (WDD)measure for ECG signal compression[J]. IEE Transaction on Biomedical Engineering, 2000, 47(11):1422-1430.

[12]Al-FahoumAS. Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure[J]. Information Technology in Biomedicine, 2006, 10(1):182-191.

[13]Sharma LN, Dandapat S, Mahanta A. ECG signal denoising using higher order statistics in Wavelet subbands[J]. Biomedical Signal Processing and Control, 2010, 5(3):214-222.

[14]Manikandan MS, Dandapat S. Multiscale entropy-based weighted distortion measure for ECG coding[J]. Signal Processing Letters, IEEE 2008, 15:829-832.

[15]MamaghanianH, AnsaloniG, Atienza D, et al. Power-efficient joint compressed sensing of multi-lead ECG signals[C]. Switzerland:2014 IEEE International, 2014: 4409-4412.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com