设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于小波分解和神经网络的呼吸运动预测算法

Respiratory motion prediction based on wavelet and neural network

作者: 黄姗姗  杜宏伟 
单位:中国科学技术大学 (合肥2300271)
关键词: 呼吸运动;预测算法;小波神经网络 
分类号:R318.04
出版年·卷·期(页码):2016·35·4(381-388)
摘要:

目的 放射治疗是胸腹部肿瘤治疗的常用手段,但呼吸等运动大大影响了放射治疗的准确性,因此精确的呼吸运动定位和预测对肿瘤治疗很有必要。相关预测方法缺乏对系统长延迟预测的研究,本文提出一种用小波分解结合Elman神经网络的算法(wavelet Elman network,WEN)预测呼吸运动。方法 采用光学定位系统采集数据,对数据进行简单的预处理,再利用小波分解压缩数据,训练Elman神经网络,最后进行神经网络的预测。预测结果和真实值对比,绘制误差曲线,计算均方根误差,并与其他主流算法对比,验证算法的可行性。结果 WEN算法在短延迟预测中表现一般,但当延迟达1000ms时,WEN算法的均方根误差平均为1.6164mm,比临床中使用的线性预测低32.9%。结论 通过实验验证了基于小波分解和Elman神经网络的呼吸运动预测算法,在长延迟时表现较好,证明了本算法的正确性及可行性。

Objective One of the common treatments for cancer of the chest and abdomen is radiation therapy,yet respiratory movement reduces the quality of radiation therapy.Therefore,the precise positioning and prediction of respiratory movement are essential in radiation therapy.An algorithm for predicting respiratory movement is proposed based on wavelet and Elman network since there is a lack of research on long delays in prediction.Methods First,we collected data by optical positioning system,pre-processed the data,then compressed data by wavelet,trained Elman network,and predicted the neural network.With the comparison of predictions and actual values,we drew error curve,calculated the root mean square error,and compared with the other major algorithms to validate the feasibility.Results The performance of WEN in short delays was not very well,when the delay came to 1000ms,the average of WEN’s RMSE (root mean square error) was 1.6164mm,32.9% less than linear prediction used in clinical.Conclusions The experiments demonstrated that the respiratory motion prediction based on wavelet and Elman network performed well in the long delays,and all the results demonstrated the validity and feasibility of the algorithm.

参考文献:

[1]Vedam SS, Keall PJ, Docef A, et al. Predicting respiratory motion for four-dimensional radiotherapy[J]. Med Phys, 2004,31(8):2274-2283.

[2]Murphy MJ, Dieterich S. Comparative performance of linear and nonlinear neural networks to predict irregular breathing[J]. Phys Med Biol, 2006,51(22):5903-5914.

[3]Sharp GC, Jiang SB, Shimizu S, et al. Prediction of respiratory tumour motion for real-time image-guided radiotherapy[J]. Phys Med Biol, 2004, 49(3):425-440.

[4]Kakar M, Nystrm H, Aarup LR, et al. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS) [J]. Phys Med Biol, 2005, 50(19):4721-4728.

[5]Ramrath L, Schlaefer A, Ernst F, et al. Prediction of respiratory motion with a multi-frequency based Extended Kalman Filter[J]. IJCARS, 2007, 2:56-58.

[6]Isaksson M, Jalden J, Murphy MJ. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications[J]. Med Phys, 2005, 32(12):3801-3809.

[7]Goodband JH, Haas OCL, Mills JA. A comparison of neural network approaches for on-line prediction in IGRT[J]. Med Phys, 2008, 35(3):1113-1122.

[8]Riaz N, Shanker P, Wiersma R, et al. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression[J]. Phys Med Biol, 2009, 54(19):5735-5748.

[9]Ingrid Daubechies. 李建平, 杨万年, 译. 小波十讲[M]. 北京: 国防工业出版社, 2004. 

[10]史峰,王小川,郁磊,等. MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社,2010.

[11]虞和济,陈长征,张省. 基于神经网络的智能诊断[M]. 北京:冶金工业出版社,2000.

[12]Verma, Poonam S. Survey: real-time tumor motion prediction for image-guided radiation treatment[J]. Computing in Science and Engineering, 2011, 13(5): 24-35.

[13]Riaz N, Shanker P, Wiersma R, et al. Preidicting respiratory tumor motion with multi-dimensinal adaptive filters and support vector regression[J]. Phys Med Biol, 2009, 54(19):5735-5748.

[14]Suk Jin Lee, Yuichi Motai. Prediction and Classification of Respiratory Motion. Studies in Computational Intelligence[M]. Berlin:Springe, 2014.

[15]Ruan D, Keall P. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning[J]. Phys Med Biol, 2010, 55(11), 3011-3025 .

[16]欧阳斌, 卢文婷, 窦建洪, 等. 基于非参数回归的呼吸运动预测方法在实时跟踪放疗中的应用[J]. 南方医科大学学报, 2011, 31(10): 1682-1686.

Ouyang Bin, Lu Wenting, Dou Jianhong, et al. Prediction of respiratory motion based on nonparametric regression for real-time tumor-tracking radiotherapy[J]. J South Med Univ, 2011, 31(10): 1682-1686.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com